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Abstract

The goal of this paper is to serve as a survey for the problem of abductive inference
(or belief revision) in Bayesian networks. Thus, the problem is introduced in its two
variants: total abduction (or MPE) and partial abduction (or MAP). Also, the problem
is formulated in its general case, that is, looking for the K best explanations. Then,
a (non exhaustive) review of exact and approximate algorithms for dealing with both
abductive inference problems is carried out. Finally, we collect the main complexity
results appeared in the literature for both problems (MPE and MAP).

Keywords: Abductive inference, belief revision, MPE, MAP, probabilistic reasoning,
propagation algorithms, Bayesian networks.

1 Introduction

In the last years artificial intelligence researchers have devoted increasing attention to the

development of abductive reasoning methods in a wide range of applications. Probably the

most clear application of abductive reasoning is in the field of diagnosis [38, 39, 42, 43],

although other applications exist in natural language understanding [6, 52], vision [27], legal

reasoning [53], plan recognition [4, 26], planning [40] and learning [33].

Abduction is defined as the process of generating a plausible explanation for a given set

of observations or facts [41]. This kind of reasoning can be represented by the following

inference rule:
ψ → ω, ω

ψ
,

i.e., if we observe ω and we have the rule ψ → ω, then we can infer that ψ is a plausible

hypothesis (or explanation) for the occurrence of ω.
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In general, there are several possible abductive hypotheses and it is necessary to choose

among them. In order to select the best explanations from the generated set, two kinds

of criteria are used: (1) metrics based criteria (probability, weight, ...) and (2) simplicity

criteria (the preferred explanation is the simplest available hypothesis).

In the context of probabilistic reasoning, abductive inference corresponds to finding the

maximum a posteriori probability state of the system variables, given some evidence (ob-

served variables). In principle, we can solve this problem by “simply” generating the joint

distribution, and then taking it as our starting point, to search for the configuration with

maximum probability. However, this way to proceed is intractable even for problems with a

small number of variables.

The paper is organized as follows: In the second section we introduce abductive inference

in the framework of probabilistic reasoning but focused on Bayesian networks (BNs). In

sections three and four we review algorithms for solving both cases of abductive inference

problems by using exact and approximate methods. The fifth section is devoted to collect

the main complexity results about abduction in BNs. Finally, in section six we conclude.

2 Abductive Inference in Probabilistic Reasoning

In this section we will describe the problem of performing abductive reasoning in the gen-

eral setting of probabilistic reasoning, although we will assume that the joint probability

distribution is represented by the factorization provided by a Bayesian network [37]):

P (XU) = P (X1, . . . , Xn) =
∏

Xi∈XU

P (Xi|pa(Xi)), (1)

where pa(Xi) is the parent set of Xi.

Before we continue, we give some notation. A lower case subscript indicates a single

variable (e.g., Xi). An upper case subscript indicates a set of variables (e.g., XI). For

some particular problems, the propositional variables are denoted by capital letters without

subscript A,B,C, . . .. The state taken by a variable Xi will be denoted by xi, and the

configuration of states taken by a set of variables XD will be denoted by xD. That is, capital

letters are reserved for variables and set of variables, and lower case letters are reserved for

states and configurations of states.

Given a set of observations1 xO for a set of variables XO, the most common query

1The configuration XO = xO is known as evidence. For the sake of simplicity we will use only xO in most
of the cases.
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in probabilistic reasoning is the computation of P (Xi|xO) for every non observed variable

(XU \XO). This kind of reasoning is called probability propagation or evidence propagation or

belief updating, and a great variety of exact and approximate algorithms have been developed

during the last years (see [5] for a description of many of them). However, this paper is not

concern with evidence propagation (which can be interpreted as predictive or deductive

reasoning), but with abductive or diagnostic reasoning, which consists in looking for the best

explanation accounting for the observed evidence.

In the context of probabilistic reasoning and Bayesian networks an explanation for a given

set of observations XO = xO is a configuration of states for the network variables, xU , such

that, xU is consistent with xO, that is, x
↓XO

U = xO (by x↓XO

U we are denoting the configuration

obtained from xU by removing the literal expressions not in XO). In fact, the explanation is

x
↓XU\XO

U , because the values taken by the variables in XO are previously known. Given the

large number of possible explanations and since we are interested in the best explanation,

our goal will be to obtain the most probable explanation. Thus, in our setting, abductive

inference or belief revision [36, 37] corresponds to the problem of finding the maximum a

posteriori probability state of the network, given the observed variables (the evidence). In

a more formal way: if XO is the set of observed variables and XU is the set of unobserved

variables, then we aim to obtain the configuration x∗U of XU such that:

x∗U = argmax
xU

P (xU |xO), (2)

where xO is the observed evidence. Usually, x∗U is known as the most probable explanation

(MPE).

In general, this problem cannot be solved by using probability propagation. That is, x∗U

cannot be obtained as

x∗U = (x∗1, x
∗
2, . . . , x

∗
|U |), with x

∗
i = arg max

xi∈ΩXi

P (xi|xO). (3)

As an example, let us consider the well-known Asia network [28]. If we assume that the

observations are (VisitToAsia=yes, PositiveXRay=yes), then figure 1 shows the result

of performing different query types over this network by using the Elvira software [7]. In

this software we can watch simultaneously the effect of processing different queries. In our

example (see detail in figure 1) the first horizontal bar shows the ’a priori’ probability for

each variable; the second bar shows the ’a posteriori’ probability for each variable given the

observed evidence; and the third bar shows the state selected for each variable when looking
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for the most probable explanation (eq. 2). As it can be seen, if we compose the MPE by

using probability propagation, we obtain:

(Smoker=yes, Tuberculosis=no, LungCancer=no, Bronchitis=no,

TuberculosisOrCancer=yes, Dyspnea=yes),

with unknown probability. However, when total abductive inference is carried out, we obtain

(Smoker=yes, Tuberculosis=no, LungCancer=yes, Bronchitis=no,

TuberculosisOrCancer=yes, Dyspnea=yes),

with probability 0.17. As we can see the resulting configuration does not coincide with the

previous one, because variable LungCancer takes now the state yes.

P(X)
P(X|evid)
MPE
MAP

(a) (b)

Figure 1: (a) Different queries performed over Asia network with XO = (V isitToAsia =
yes, PositiveXRay = yes). (b) Detail for nodes Bronchitis and LungCancer

The previous definition of abductive inference can be generalized by considering a subset

of the unobserved variables as the interest target, instead of all of them. These variables

are usually termed explanation set [30], and the task is known as Partial abductive inference

(or maximum a posteriori hypothesis, MAP) while the previous one which is known as Total

abductive inference (or MPE). Although this problem seems to be more useful in practical

applications (because we can select the relevant variables2 as the explanation set) than total

abductive inference it has received much less attention.

2those representing diseases in a medical diagnosis problem, those representing critical components
(starter, battery, alternator, ...) in a car diagnosis problem, etc . . .
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ψ(A) = max
B

ψ(A,B) = max
B







b ¬b
a 0.35 0.2
¬a 0.15 0.3





 =

(

a 0.35
¬a 0.3

)

Figure 2: Marginalizing by maximum (max-marginalization)

Now, if we denote by XE ⊂ XU the explanation set, then we aim to obtain the configu-

ration x∗E of XE such that:

x∗E = argmax
xE

P (xE|xO) = argmax
xE

∑

xR

P (xE, xR|xO), (4)

where XR = XU \ XE. In general, x∗E is not equal to the projection of configuration x∗U

onto the variables of XE. Therefore, we need to obtain x∗E directly (eq. 4). As an example,

let us to retake the example based on figure 1. Now, if we select variables LungCancer and

Bronchitis as the explanation set, then by using partial abductive inference we get the

configuration:

(LungCancer=no, Bronchitis=no)

as the most probable explanation (see detail in part (b) of the same figure). As we can

see, this configuration does not coincide with the one obtained by projecting x∗U over XE

(LungCancer=yes, Bronchitis=no).

To finish this section, just remark that in both queries of abductive inference, the problem

is generalized to the one of looking for the K most probable explanations (K MPEs).

3 Solving total abduction (MPE) in BNs

As it has been shown in the literature, in total abduction, the MPE can be found by means

of probability propagation methods but using maximum as the marginalization operator

(fig. 2) instead of summation (due to the distributive property of maximum with respect to

multiplication) [12].

Therefore, the process of searching for the most probable explanation (in total abduction)

has the same complexity3 as probabilities propagation. However, in order to look for the

K MPEs more work has, in general, to be done. In the next subsections we review some

approaches for solving this problem in an exact and approximate way.

3See Section 5 for details in this topic.
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3.1 Exact computation

We review the two main approaches which can deal with networks of unconstrained topology.

3.1.1 Using junction trees.

Dawid [12] developed an efficient algorithm to calculate the most probable explanation

(MPE) in a junction tree. The algorithm is based on the probabilities propagation algo-

rithm described in [3], but replacing summation (sum-marginalization) by maximum (max-

marginalization) in the calculation of messages. When max-marginalization is used during

the two stages of messages propagation (collect and distribute evidence) the process was

termed max-propagation by Dawid.

Given an initialized junction tree T with cliques {C0, . . . , Ct}, after max-propagation the

following expression holds:

∀Ci ∈ T max
xU∈ΩU

P (xU , xO) = max
ci∈ΩCi

ψ(ci) (5)

Therefore, if there is only one configuration of maximal probability, then we can identify

the MPE x∗U by inspecting the residual set Ri of each clique Ci and picking up the state of

maximal probability for the variables in Ri. However, if there are several configurations of

maximal probability, then the following algorithm can be used in order to identify one of

them.

FindMPE

- input: a rooted junction tree T = {C0, . . . , Ct} after applying max-prop.

- output: the MPE x∗ = concatenate(c∗0, r
∗
1, . . . , r

∗
t )

1. For the root C0: c
∗
0 = argmaxC0

ψ(C0)

2. For j = 1, . . . , t do

Ci = parent(Cj)

s∗ij = c∗i
↓Sij

r∗j = argmaxCj\Sij
ψ(Cj, s

∗
ij)

As an example let us consider the figure 3. On the left we have only a configuration of

maximal in C0 and so we can identify it (a, b, c) by inspection. However, in the junction tree

on the right there are more than one configuration of maximal probability (highligthed in
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Clique C1 Clique C0

(a,b) = 0.35 S01 (b, c) = 0.35

(a, b) = 0.03 (b) = 0.35 (b, c) = 0.15

(a, b) = 0.25 (b) = 0.6 (b, c) = 0.04

(a, b) = 0.06 (b, c) = 0.06

Clique C1 Clique C0

(a,b) = 0.35 S01 (b, c) = 0.35

∗(a, b) = 0.35 (b) = 0.35 (b, c) = 0.15

(a, b) = 0.20 ∗(b) = 0.35 (b, c) = 0.04

(a, b) = 0.06 ∗(b, c) = 0.35

Figure 3: Identifying the MPE in two different scenarios

bold and with an (*) respectively). Thus, we have to apply the previous algorithm in order

to identify one of them: (a, b, c) or (a, b, c).

Looking for the K MPEs. Looking for the K most probable explanations can be viewed as

an extension of the MPE problem. Nilsson [31], has proved that using Dawid’s algorithm

only the three most probable explanations can directly be identified, but the fourth and

subsequent explanations cannot be found directly. Therefore, more complex methods have

to be used.

In [47] Seroussi and Goldmard developed a method able to find the K MPEs for every

value of K. The method only requires the upward phase of max-propagation (that is, col-

lecting evidence from the root) but modifying the messages that are sent from each clique

to its parent. Now, instead of sending a single message/potential from Ci, a vector of K

messages is sent, corresponding to the K most probable configurations of the subtree rooted

by Ci. The main problem of this algorithm is its high computational cost.

Later, Nilsson [32] has developed a more efficient method for finding the K MPEs for

every value of K. As in Seroussi and Goldmard proposal, only the upward phase of max-

propagation is necessary. The algorithm for obtaining the K MPEs is based on the combina-

tion of Dawid’s algorithm with a clever divide and conquer approach. The idea is as follows:

after obtaining the best MPE (x1U), the space of possible configurations is partitioned in

order to exclude it from the set of possible configurations. As the second MPE (x2U) must

differ from the best one in at least one residual set, the search space is partitioned into t

subspaces by using the value of the residual sets as evidence. The tricky point of Nilsson’s

algorithm is that no new propagation phases are required in order to consider these new

evidences, but by inspecting the potentials in the junction tree. After identifying x2U a new

partitioning is carried out, now the clique (whose residual changes with respect to x1U) is

considered as the root for the partition, and so only the cliques below it in the junction tree

will be considered. For a complete (and formal) description of the model see [32].
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3.1.2 Using variable elimination

Variable elimination [48, 57] can be directly adapted for dealing with the problem of looking

for the best MPE. The main modification is to use max-marginalization instead of sum-

marginalization when a variable is being eliminated. Also, we have to store the state of the

variable being eliminated which takes the maximum. Finally, the configuration of maximum

probability is obtained by assembling the stored states [29, 21]. In order to look for the

K MPEs more work has to be done. Li and D’ambrosio [29] propose to use the standard

variable elimination algorithm to look for the best MPE, and then they give a linear time

algorithm which can be invoked (as many times as necessary) in order to get the next MPE.

3.2 Approximate computation

In this subsection we distinguish between search and non search based methods:

3.2.1 Search methods

As abductive inference in BNs can be viewed as a combinatorial optimization problem,

several authors have used genetic algorithms to approximate a solution ([24, 44, 45, 58]). In

all the cases the idea is to optimize the probability

P (xU |xO) ∝ P (xU , xO),

so to evaluate the goodness of a given individual xU the factorization provided by the network

is used (eq. 1), requiring only n multiplications (that is, linear in the number of variables).

Below, we describe some relevant points of these algorithms.

• In Gelsema’s algorithm [24], a chromosome is a configuration of the unobserved vari-

ables, i.e., a vector of integers. In this case, crossover is implemented as the classical

one-point operator. It is worth noting that Gelsema uses the ‘a priori’ probabilities of

the BN and the observed evidence to generate the initial population, so that the search

starts in promising regions of the search space.

• In the approach proposed by Rojas and Kramer [44, 45], a chromosome of the pop-

ulation is represented as a copy of the graph included in the BN, but in which each

variable has been instantiated to one of its possible states. This representation makes

it possible to implement the crossover operator as the interchange of a subgraph with

the center in the variable Xi, Xi being randomly selected for each crossover.
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• Finally, Zhong and Santos [58] propose to group the variables in the network into several

clusters attending to the probabilistic correlations among the variables, and to use

cluster-based mutation and crossover. The cluster are identified by using reinforcement

learning, and the output of the genetic algorithm is used to refine the clustering process

in order to get a better grouping.

Recently, Kask and Dechter [25] have studied the applicability of local search to this

problem. They compared several stochastic local search algorithms for solving the MPE

problem. In their analysis, they found that the greedy approach combined with stochastic

simulation outperforms the other analyzed techniques: stochastic simulation (alone), greedy

local search (alone) and simulated annealing.

The problem of looking for the K MPEs is solved by these algorithms by returning the

K best individuals/chromosomes visited during the search.

3.2.2 Non search methods

Non search methods for dealing with the MPE problem are based on the methods discussed

in section 3.1:

• The Elvira software [7] allows to solve the MPE problem by using junction tree based

approximate propagation. The idea is to use Nilsson’s algorithm [32] but dealing with

an approximate representation of the potentials associated to cliques and messages.

Concretely, approximate probability trees are used instead of probability tables/trees

(see [46] for a description on (approximate) probability trees).

• A method based on variable elimination is the so-called mini-bucket approach [22].

The idea of the mini-bucket approach is to move some marginalizations outside of

the product, in order to deal with smaller potentials. Of course, the result of this

transformation will be, in general, an approximation of the true value. For example,

in variable (bucket) elimination we could have the following scenario when eliminating

variable X:

max
X

(f(X,Y1, Y2)× f(X,Y2, Y3)× f(X,Y4, Y5)× f(X,Y5, Y6))

If each variable has ten different states, then this operation has to build a potential

of size 107. By using the mini-bucket approach, the previous computation could be
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organized in the following way:

{

max
X

(f(X,Y1, Y2)× f(X,Y2, Y3)) ,max
X

(f(X,Y4, Y5)× f(X,Y5, Y6))
}

which builds two potentials of size 104. An extra advantage of the mini-buckets ap-

proach is that it gives bounds on the quality of the approximate solution.

4 Solving partial abduction (MAP) in BNs

As was stated in Sec. 2 when we are interested in the MPE for a given subset (XE) of the

network’s variables, then equation 4 has to be used. Therefore, two types of marginalization

operators have to be applied: max-marginalization over the variables in the XE and sum-

marginalization over the rest of variables.

In the next two subsections we describe exact and approximate methods proposed to cope

with the problem of partial abductive inference (MAP). In the case of exact computation we

focus on junction tree based algorithms, although some remarks (and references) to variable

elimination will be provided.

4.1 Exact computation

Given the algorithms described for total abduction in BNs and the need of using two types

of marginalization, it seems easy to solve the problem of partial abductive inference, we can

use the following two-stage based algorithm:

1. Marginalize out (by summation) over the variables not in the explanation set. This

process will yield a junction tree containing only the variables in the explanation set

(XE).

2. Apply an algorithm of total abductive inference.

However, the problem is more complex than it looks like, because due to the non-

commutative behaviour of summation and maximum the following constraint has to be

considered: no summation can be carried out over a potential obtained by maximum. This

fact motivates that not all junction trees obtained from the original network are valid. Thus,

the previous two-stage algorithm can be only directly applied when XE is included in a node

of the junction tree, or when the variables of XE constitute a subtree of the complete junc-

tion tree. As an example, let us consider the junction tree in figure 4.(a) and the explanation

11



set XE = {A, T,B}. Clearly this tree is not valid for the given explanation set, because in

clique C2 we have to sum-marginalize variables {E,L} from the potential ψ(L,E, T ) whose

computation has involved max-marginalizing over B.

Therefore, we have modified the problem to the following one: what happen when the

variables of the explanation set are associated with several disconnected subtrees of the

junction tree?. Below, we describe several approaches which have been proposed in the

literature in the last years.

4.1.1 Adapting a given junction tree.

With the proposal of computing marginal values over a set of variables, Xu [55] gives a

method for transforming the initial junction tree into another one containing a node/cluster

in which the variables of XE are included. The problem of this approach is that if XE

contains many variables, then the size of the potential associated with that cluster will be to

large. Later, Nilsson [32] briefly outlines how to slightly modify Xu’s algorithm in order to

allow (when possible) that the variables in XE constitute a sub-tree and not a single cluster.

More recently, de Campos et al. [18] have detailed this process, studying heuristics and

introducing and intermediate step. In the rest of this section we briefly describe this work.

The goal of obtaining a junction tree TE containing only the variables in XE, from a

given junction tree T can be performed as follows:

1. Identify the smallest subtree T ′ of T that contains the variables of XE.

2. Pass sum-flows from the rest of the cliques to T ′. In this way T ′ factorizes over the

variables contained in its cliques.

3. While T ′ contains variables not in XE do: Select two neighbors Ci and Cj in T ′,

and replace them by their fusion into a new node Cij obtained from C∗
ij = Ci ∪ Cj

by deleting the variables that are not necessary to maintain the running intersection

property and do not belong to XE. The potential assigned to Cij is4:

ψ(Cij) =
∑

C∗
ij
\Cij

ψ(Ci) · ψ(Cj)

ψ(Sij)
(6)

Notice that C∗
ij is relevant because though we produce a clique Cij, during the process

we have to deal with the potential defined on the whole set C∗
ij. Figure 4.(b) shows T ′ (wrt

4The division can be omitted if we know that no propagation has been previously carried out over the
junction tree, because in such a case Sij contains an unitary potential
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XE = {A, T,B}) obtained from T in part (a) of the same figure. Finally part (c) of the

same figure shows an example for the Bayesian network Asia taking XE = {A, T,B}. Notice

that the potential over {B, T,E, L} is built during the fusion process.

A,T

L,E,T

1

2
T

E,X

B,D,E B,L,S

3

56

E

B,E
L,B

B,E,L
4

E,L

A,T

L,E,T

B,E,L

1

2

4

T

E,L

A,T
1

2
T

T,B

(a) (b) (c)

Figure 4: (a) The initial join tree. (b) T ′ for XE = {A, T,B}. (c) The junction tree
obtained by the fusion process.

The following improvements were proposed for this algorithm in [18]:

• Introducing an intermediate step. An optimization can be added to the previous algo-

rithm between steps 2 and 3. The idea is to look for the variables not in XE that are

only included in one clique of T ′, then it is clear that these variables can be marginal-

ized out directly. This idea, although it is very simple can improve the efficiency of the

fusion process carried out in step 3 and also the quality of the final tree (see [18] for

details and examples).

• Defining heuristics for step 3. In [18] the fusion process performed in step 3 is formally

defined as a link deletion process. It is important to emphasize that unlike the case

of triangulation (deletion of nodes) in this case not all the links have to be removed.

Therefore the first think to do is to identify which are the links candidates for deletion.

Definition 1 [18] Given a junction tree T ′ and an explanation set XE, a link (Ci, Cj)
with separator Si,j has to be removed if:

i) Si,j ⊆/ XE, or

ii) Si,j ⊆ XE, but Si,j = Ci or Si,j = Cj.
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The second condition of the previous definition is necessary to deal with non-maximal

nodes, which can be introduced by the intermediate step presented in the previous

subsection. To finish with this section, we reproduce here the heuristics which obtained

better results in [18] when applied to select the next link to be removed:

– Select the link (Ci, Cj) with yields smallest s(Cij).

The goal of this heuristics is the creation of nodes with smallest state space, with the

expectation of an earlier deletion of the variables not in XE.

4.1.2 Looking for an explanation set oriented junction tree.

A disadvantage of the previous method is that the quality of the final junction tree, depends

on the topology of the initial one, which was obtained for general inference purposes and

not thinking about partial abductive inference. An alternative approach could be to search

for a specific junction tree given an explanation set XE [23, 18]. This task can be achieved

by taking advantage of the available degrees of freedom in the compilation/triangulation

process. Concretely, during the triangulation we can constrain the deletion sequence, in

such a way that we start to delete the variables of XE only when all the variables not in XE

have been deleted.

Using this kind of deletion sequences, and adding all the clusters (and not only those

which are maximal) to the tree, we can build a junction tree in which a subtree for XE can

be directly identified. If only cliques5 are added to the tree, it is necessary to apply maximum

cardinality search (see [28]) beginning with a variable of XE and breaking ties in favor of the

variables in XE during the numbering of the graph’s nodes. Figure 5.a shows a junction tree

valid for the Asia network and XE = {A,B, T}.

Notice that now T ′ practically coincides with TE. In fact the fusion process (step 3) is not

necessary because the variables in T ′ and not in XE are in the leaves and will be deleted (by

summation) by the intermediate step described above (this is the case in the tree depicted

on part (b) of figure 5, where L and E can be directly removed.

The experiments carried out in [18] show that, as expected, the size of the join tree

over which partial abductive inference will be performed is smaller when using constrained

5Sometimes it is no possible to obtain a valid clique tree [23], but the structure appears valid after applying
the intermediate step proposed above.
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A,T
1

2
T

L,E,T,B

E,X
3

4

E

S,L,B B,D,E
5

E,B
B,L

A,T
1

2
T

L,E,T,B

(a) (b)

Figure 5: (a) Specific junction tree for Asia and XE = {A,B, T}.(b) Identified T ′

deletion sequences than when using adapted junction trees. However, the authors also get

an unexpected result: in general, the abductive process runs faster over adapted junction

trees than over specific ones. De Campos et al. analyze this problem in [20] and conclude

that this is due to the fact that when using specific junction trees the abductive inference

method deals with very large potentials since the beginning of the process. However, as the

initial information, that is the conditional probability tables in the network, is the same in

both cases, then there should be lots of regularities in those large potentials. In fact, when

using probability trees instead of tables to represent potentials, as regularities and contextual

independences are exploited, the efficiency of the method is increased no matter which kind

of junction tree (adapted or specific) is used. However, the greater benefit is obtained when

using specific ones, to the point that, in general, (as expected initially) the algorithm runs

faster over specific junction trees than over adapted ones.

With respect to variable/bucket elimination, Dechter [21] proposed the algorithm elim-

map which basically uses a constrained deletion sequence. Firstly, the variables not in the

explanation set are eliminated by summation, and then the variables in XE are eliminated by

maximum, storing in each step the state of maximum probability of the variable being elim-

inated (as in elim-mpe). As well as in total abduction, the algorithm of Li and D’Ambrosio

[29] could be used to look for the remaining K − 1 explanations.

4.2 Approximate computation

As in the total case, in this subsection we distinguish between search and non search based

methods:
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4.2.1 Search methods

Of course, partial abductive inference can also be defined as a combinatorial optimization

problem, being now ΩXE
instead of ΩXU

the search space. Thus, several combinatorial

optimization techniques have been used:

• Evolutionary algorithms. As in the total case, genetic algorithms have been used to

approach this problem [14, 19, 15]. Now, eq. 1 cannot be used to evaluate an individual

or candidate configuration because we have to remove (by addition) the variables in

XU \ XE. That is, if we use eq. 1 we have to invoke it |ΩXU\XE
| times, which is

impracticable in most of the cases.

In [14] the fitness P (xE, xO) of a configuration xE is computed by the process described

below, where T is a rooted clique tree, being C0 the root.

1. Enter the evidence xO in T ,

2. Enter (as evidence) the configuration xE in T ,

3. Perform CollectEvidence from the root (C0) (i.e., an upward propagation), and

4. P (xE, xO) is equal to the sum of the potential stored in the root (C0).

Therefore, to evaluate a configuration an exact sum-propagation is carried out, or more

correctly half propagation, because only the upward phase is performed and not the

downward one. Furthermore, for this propagation we can use a clique tree obtained

without constraints and so its size is much smaller than the clique tree used for exact

partial abductive inference. In addition, in [14] it is shown how the tree can be pruned

in order to avoid the repetition of unnecessary computations when a new chromosome

is being evaluated.

An improvement to this algorithm can be found in [19], consisting in the use of specific

genetic operators that allow us to take advantage of the calculations previously carried

out when a new individual is being evaluated. In this way the need to perform a whole

upward propagation is avoided, although more memory is needed.

In [13] estimation of distribution algorithms (EDAs) are used to compare with this

two genetic approaches. EDAs are evolutionary algorithms in which genetic has been
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replaced by estimation and sampling of probability distribution. The same evaluation

function is used and the results are really competitive, depending on the type of EDA.

In order to reduce the complexity of evaluating a configuration, in [15] the junction

tree is pre-processed by means of explanation set absorption. That is, variables in XE

are considered as evidence, but all its possible states are taken into account. In this

way, some cliques store vector of potentials instead of single potentials, and the correct

one, which depends on the chromosome being evaluated, is selected in execution time.

The advantage of this approach is to deal with smaller junction trees, and the authors

show a considerable speed-up in the efficiency of the algorithm. However, the main

disadvantage is the need of (much) more memory when many variables are included in

the explanation set.

• Simulated annealing. In De Campos et al. [16] a simulated annealing based algorithm

is proposed. As in evolutionary algorithms, the evaluation function is based on clique

tree propagation, but now neighbor configurations can be evaluated by means of local

computations, improving the efficiency with respect to global evaluation. The algo-

rithm maintain a state composed of the current configuration and the current clique

Ci, then the neighborhood of that configuration is defined as the set of configurations

in which only the variables included in the residual sets of adjacent cliques to Ci can

change their value. This assumption allows to organize computations in such a way

that to evaluate a neighbor configuration only the current clique and its neighbors in

T are involved. After selecting the new configuration, the algorithm also change its

current clique to the neighbor containing (in its residual set) the variable(s) who has

change its value (wrt the previous configuration).

• Local search. Park and Darwiche [35] propose to use local search to solve partial

abductive inference (or MAP). The algorithm is based in a hill climbing (with restart)

strategy in which we move from a configuration xE to one of its neighbors only if

P (x′E, xO) > P (xE, xO). A neighbor of xE is defined as the result of changing the value

of a single variable, so there are |XE| possible neighbors. The novelty of this method

resides in the way in which configurations are evaluated. The authors propose to use a

method based on differential inference [11], which allow them to compute the value of

all the neighbors in O(n exp(w)), where n is the number of variables and w the width
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of an (unconstrained) elimination order.

Later, Park [34] extend the approach to larger networks by replacing the evaluation

method. In this work, the score for a given configuration is computed by using a method

for approximating the probability of evidence based on loopy belief propagation [54, 56].

4.2.2 Non search methods

As wells as in the MPE problem, the mini-bucket approach [22] and the use of approximate

probability trees [20] have been used as tools for obtaining approximate solutions to the

partial abductive inference problem.

5 Complexity results

It is well known that exact probabilistic inference can be performed efficiently in networks

of restricted topology (trees and polytrees), but in the general case (networks with cycles)

propagation is NP-hard [8]. Also, approximate inference in BNs is NP-hard too [9], although

the class of solvable problems is wider. Therefore, as abductive inference in BNs is solved

by propagation algorithms it is expected to be NP-hard as well. Below we revised some

complexity results about abductive inference in BNs.

Looking for the MPE in BNs can be solved efficiently in the same cases as probability

propagation, but Shimony [50] proves that in the general case the MPE problem is NP-hard.

Besides, with minor modifications to this result, Shimony shows that the problem remains

NP-hard even when the topology of the network is restricted to an in-degree (number of

parents) of 2 or to an out-degree (number of children) of 2.

With respect to the use of approximations, Abdelbar and Hedetniemi [1] have shown that

approximating the MPE problem with a constant ratio bound is also NP-hard. In the same

paper the authors also prove that given an explanation, the process of approximating the

next one with a constant ratio bound is NP-hard too. Abdelbar and Hedetniemi [1] also gave

an additional and interesting result with respect to what they termed dynamic abduction:

given the MPE (or K MPEs) for a BN and an initial evidence xO, the problem of finding or

approximating the MPE (K MPEs) for a modified evidence xO
′ which differs form xO by the

addition or removal of even a single pair (variable,value) is also NP-hard. Finally, as in [50]

they extend their results to the case of networks with restricted topology (in-degree=2 or out-

degree=2). Later, Abdelbar et al. [2] show that on the contrary to probability propagation
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[10], finding or approximating the MPE in BNs remains NP-hard even for networks in which

probabilities are bounded within the range [l, u] for any 0 ≤ l < 0.5 < u ≤ 1.

With respect to partial abduction or MAP, it seems that solving this problem is harder

than solving related inference problems as probability propagation or total abductive infer-

ence [23, 16, 34], being really complex even for networks in which the other tasks can be

solved efficiently. With respect to the hardness of MAP, Park [34] shows that MAP is NPPP-

complete (MPE is NP-complete and probability propagation is PP-complete in its decision

version). Besides, Park shows that elimination algorithms require exponential resources to

perform MAP, even on some polytrees; and that MAP is NP-complete when restricted to

polytrees.

Related with MAP, Gámez [23] gives a result which can be used to obtain a lower bound

for clique size (or elimination order width) for any given problem. In fact, given a network

G and an explanation set XE, Gámez shows that for all constrained elimination sequence

(variables of XE are eliminated last), and for all variable Xi not in XE, there is at least one

clique containing Xi ∪ accE(Xi), where

accE(Xi) = {Xj ∈ XE | ∃ an undirected path (Xi, X
1
ij, . . . , X

p
ij , Xj) in G,

such that, {X1
ij, . . . , X

p
ij} ⊂ XU \XE}.

Therefore, the lower bound for any constrained elimination order for that problem will be:

max
Xi not in XE

|{Xi} ∪ accE(Xi)|

As an example of this result, let us consider the classical Alarm network and all the root

nodes (which is very usual) as the explanation set. In this case, there are several variables

(not in XE) such that accE(·) = XE, and so there will be at least one clique containing

(among others) all the variables in the explanation set.

6 Conclusions

In this paper we have revised the problems of performing total and partial abductive inference

in Bayesian networks. A review of exact and approximate algorithm for dealing with both

problems and their extension to looking for the K best explanations has been carried out. Of

course, we are aware of the fact that not all algorithms have been discussed by our revision,

but due to the lack of space we have selected the approaches with wider application (networks

of unconstrained topology) and of more recent publication.
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There is a very interesting problem related with partial abduction or MAP which has

not been covered in this paper. We refer to the problem of selecting the explanation set.

In the literature, it is mostly assumed that the explanation set is provided a priori by an

expert, another algorithm, etc, ... It is an extended practice to select root nodes (which

usually represents diseases or disorders) or the evidence ancestors as the explanation set

[29]. Shimony [49, 51] proposed a method based on irrelevance criteria that does not require

a given explanation set, on the contrary the algorithm tries to identify the relevant nodes

directly. De Campos et al. [17] propose to start with an explanation set, but to simplify the

obtained explanations by using independence-based criteria. However, in our opinion this

problem should receive more attention from the BNs research community.
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(MCyT), under project TIC2001-2973-C05-05. The author is grateful to Julia Flores for her

comments and suggestions on previous versions of this work.

References

[1] A.M. Abdelbar and S.M. Hedetniemi. Approximating MAPs for belief networks is NP-

hard and other theorems. Artificial Intelligence, 102:21–38, 1998.

[2] A.M. Abdelbar, S.T. Hedetniemi, and S.M. Hedetniemi. The complexity of approxi-

mating MAPs for belief networks with bounded probabilities. Artificial Intelligence,

124:283–288, 2000.

[3] S.K. Andersen, K.G. Olesen, F.V. Jensen, and F. Jensen. Hugin: a shell for buid-

ing belief universes for expert systems. In Proceedings of the 11th International Joint

Conference on Artificial Intelligence, Detroit, 1989.

[4] D.E. Appelt and M. Pollack. Weighted abduction for plan ascription. Technical report,

Artificial Intelligence Center and Center for the Study of Language and Information,

SRI International, Menlo Park, California, 1990.

[5] E. Castillo, J.M. Gutiérrez, and A.S. Hadi. Expert Systems and Probabilistic Network

Models. Monographs in Computer Science. Springer-Verlag, New York, 1997.

20



[6] E. Charniak and E. McDermott. Introduction to Artificial Intelligence. Addison-Wesley,

1985.

[7] Elvira Consortium. Elvira: An environment for creating and using probabilistic graph-

ical models. In Proceedings of the First European Workshop on Probabilistic Grpahical

Models, pages 220–230, 2002.

[8] G.F. Cooper. Probabilistic inference using belief networks is NP-hard. Artificial Intel-

ligence, pages 393–405, 1990.

[9] P. Dagum and M. Luby. Approximating probabilistic inference in bayesian belief net-

works is NP-hard. Artificial Intelligence, 60:141–153, 1993.

[10] P. Dagum and M. Luby. An optimal approximation algorithm for bayesian inference.

Artificial Intelligence, 93:1–27, 1997.

[11] A. Darwiche. A differential approach to inference in bayesian networks. In Uncertainty

in Artificial Intelligence: Proceedings of the Sixteenth Conference (UAI-2000), pages

123–132, San Francisco, CA, 2000. Morgan Kaufmann Publishers.

[12] A.P. Dawid. Applications of a general propagation algorithm for probabilistic expert

systems. Statistics and Computing, 2:25–36, 1992.
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[18] L.M. de Campos, J.A. Gámez, and S. Moral. On the problem of performing exact partial

abductive inference in Bayesian belief networks using junction trees. In B. Bouchon-

Meunier, J. Gutierrez-Rios, L. Magdalena, and R.R. Yager, editors, Technologies for

Constructing Intelligent Systems 2: Tools, pages 289–302, 2002.
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