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Abstract. Current high-performance distributed systems use a switch-based 

interconnection network. After the occurrence of a topological change, a 

management mechanism must reestablish connectivity between network devices. 

This mechanism discovers the new topology, calculates a new set of routing paths, 

and updates the routing tables within the network. The main challenge related to 

network reconfiguration (the change-over from one routing function to another) is 

avoiding deadlocks. Former reconfiguration techniques significantly reduce network 

service. In addition, most recent proposals either need extra network resources (such 

as virtual channels) or their computation complexities are prohibitive. For 

up*/down* routed networks we propose a new reconfiguration method that supports 

a virtually unaffected network service at a minor computational cost. This method is 
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suitable for both source and distributed routing networks, and does neither restrict the 

injection of packets nor the updating of routing tables during the topology-change 

assimilation.  

1   Introduction 

The communication subsystem of most modern high-performance distributed systems includes a 

switch-based interconnection network. In recent years, several different interconnect 

technologies have been proposed, some based on source routing (Myrinet 2000 [8], Advanced 

Switching [1]), and others based on distributed routing (InfiniBand [5]). 

In this kind of interconnects, after the occurrence of a fault or after the removal or insertion of 

a component in the network, a new routing function must be calculated based on the new 

topology that results from the change. For the purpose of path-computation the interconnection 

network is usually represented as a directed graph. The tasks of discovering the network 

topology and computing the new routing function are typically performed by a centralized 

management entity which is called mapper in Myrinet, subnet manager in InfiniBand, and fabric 

manager in Advanced Switching. 

In the literature, the process of replacing one routing function with another is traditionally 

referred to as network reconfiguration. It is well-known that, although both routing functions are 

by themselves deadlock-free, updating fabric paths in an uncontrolled way may lead to deadlock 

situations since packets that belong to one of the routing functions may take turns that are not 

allowed in the other routing function. 

Early reconfiguration mechanisms (designed for Autonet [15] and Myrinet [2] networks) 

solved this problem by emptying the network of packets before replacing the routing function. 
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Such a simple approach is referred to as static reconfiguration, and has a negative impact on the 

network service availability since for a period of time the network cannot accept packets. 

Recently, several schemes have been proposed for distributed routing systems in order to 

increase network availability during the change-over from one routing function to another. These 

mechanisms allow injection of data traffic while the routing function is being updated, and are 

known as dynamic reconfiguration techniques. In order to guarantee deadlock-freedom the 

dynamic reconfiguration schemes are, in general, more advanced than the static reconfiguration 

schemes are. 

In this paper we propose a new dynamic reconfiguration strategy which is based on the 

up*/down* routing algorithm [15] and is applicable to both source and distributed routing 

networks. The main idea behind the proposed strategy is to transform an invalid up*/down* 

graph (that results from a topological change) into a valid up*/down* graph, while ensuring that 

turns that are prohibited by one of the routing functions are not allowed by the other routing 

function. Section 2 provides background information on the up*/down* routing algorithm and on 

previous studies of reconfiguration of up*/down* routing networks. Section 3 formally 

introduces the concept of a close graph and presents the new reconfiguration strategy in detail. In 

this strategy a new directed graph (which is close to the old directed graph) is first computed by a 

centralized management entity. Then a new routing function is derived by considering both the 

old and the new graph. Thereafter, the new routing function is asynchronously distributed to the 

routing elements. This enables a dynamic update of the routing function. In Section 4 the 

performance of the proposed reconfiguration strategy is evaluated, before we conclude in Section 

5. 
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2   Network Reconfiguration in Up*/down*-based Interconnects 

2.1   Up*/down Routing 

Our new reconfiguration scheme is based on up*/down* [15], a popular deadlock-free routing 

algorithm suitable for regular and irregular topologies. This algorithm is based on a cycle-free 

assignment of direction to the operational links in the network. This assignment is always 

possible, regardless of network topology. For each link, a direction is named up and the opposite 

one is named down. To avoid deadlocks, legal routes never use a link in the up direction after 

having used one in the down direction. Messages can cross zero or more links in the up direction, 

followed by zero or more links in the down direction. In this way, cycles in the channel 

dependency graph [4] are avoided, thus preventing deadlock. 

A sink node [3] is a node in a directed graph that is not the source of any link. The up*/down* 

routing algorithm requires the existence of a single sink node in the graph. The reason is that 

there are no legal routes between two sink nodes because each possible route would require 

down to up transitions. This restriction is required for network connectivity.  

A break node is a node that is the source of two or more links. In the up*/down* routing 

algorithm, these nodes prevent certain connections (input port - output port) from being used by 

the messages crossing them. These restrictions are necessary for deadlock freedom. There must 

exist one break node in every cycle, but its position is unrestricted.  

In up*/down* routing, the associated directed graph will contain one and only one sink node. 

Additionally, that graph will be acyclic. A directed graph that is acyclic and contains a single 
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sink node is called a correct graph. A correct graph may include several break nodes within its 

topology, as many as necessary to break all the cycles.  

Obviously, an incorrect graph is one that does not meet the restrictions imposed in the 

previous definition. This implies the absence of a sink node, the existence of more than one sink 

node, or the existence of cycles. If there is no sink node, then the graph will contain one or more 

cycles and up*/down* routing cannot guarantee deadlock freedom. If there are several sink 

nodes, then up*/down* routing cannot guarantee network connectivity. There is always at least 

one false break node between two sink nodes. A false break node is a break node in which two 

links with the down end connected to it do not belong to the same cycle in the undirected graph 

of the network. A false break node splits the network into two unreachable regions. Obviously, a 

correct graph contains no false break nodes.  

Several alternative algorithms for building an up*/down* directed graph have been proposed 

in the literature. Traditional proposals are based on the computation of a network spanning tree 

rooted in one of the nodes, by using a breadth-first search (BSF) [15], a depth-first search (DFS) 

[14], or a propagation-order (POST)  [13] strategy. Then, the links that are part of the spanning 

tree are given up directions pointing towards the sink node, whereas the direction of the links 

that are not part of the spanning tree must be carefully assigned in order to avoid introducing any 

cycle of up or down links.   

2.2   Network Reconfiguration  

With respect to the network reconfiguration, deadlock is not an issue when a static 

reconfiguration scheme is used since packets that are routed according to the old routing function 

and packets that are routed according to the new routing function are not simultaneously present 



 6

in the network. Updating the routing function while the network remains up and running, on the 

other hand, requires more advanced reconfiguration schemes. Next, we briefly depict some 

dynamic reconfiguration techniques proposed for networks that use distributed routing. 

The Partial Progressive Reconfiguration (PPR) [3] and Skyline [6] approaches aim to repair an 

uncorrected up*/down* graph which includes several sink nodes. PPR computes the new graph 

in a distributed way, where an invalid up*/down* graph is transformed into valid sub-regions 

that constitutes a valid up*/down* graph. Skyline is a technique to identify the region of the 

network that must be reconfigured after the change. Then, any connection method –for example 

PPR– can be applied over that part of the graph.  

On the other hand, Double Scheme [10] and Simple Reconfiguration [7] can be used by any 

routing algorithm, including up*/down*. Double Scheme requires two disjoint sets of virtual 

channels to separate packets routed according to the old routing function from packets routed 

according to the new routing function. Simple Reconfiguration introduces a special packet 

(called a token) to govern the transition from one routing function to another. Deadlock is 

avoided by ensuring that each link first transmits packets that belong to the old routing function, 

then the token, and finally packets that belong to the new one. 

3   A Dynamic Reconfiguration Scheme Based on Close Graphs 

3.1 Deadlock-Free Routing Update Based on Close Graphs 

This section presents our new reconfiguration method that, after a topology-change, calculates a 

new routing function which ensures that packets that belong to the new routing function cannot 
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take turns that are prohibited in the old routing function, and vice versa. This guarantees that 

packets that belong to the old and new routing functions can unrestrictedly coexist in the network 

without causing deadlocks. The method is based on the concept of close up*/down graphs, which 

will be defined shortly. This section also presents lemmas to support that, when an up*/down* 

graph for the new topology is designed close to the up*/down* graph for the previous topology, 

the routing function can be updated without the risk of transient deadlocks. 

 

Definition 1. Assume that two up*/down* directed graphs, G1 and G2, represent the same 

network topology. Then, G1 and G2 are close iff each cycle in G1 and G2 is broken in the same 

node or in neighboring nodes. 

 

Lemma 1. Assume that an up*/down* directed graph G1 is incorrect due to the presence of 

several sinks. Then, it is always possible to obtain a correct graph G2 which is close to G1. 

 

Proof. In a correct up*/down* graph, each possible cycle must contain at least one node with two 

incoming up-links and at least one node with two outgoing up-links. For each possible cycle in 

G2, we have three options with respect to break node placement (in the same node as in G1, or in 

one of the two neighboring nodes). Thus, it is always possible to construct a correct graph G2 

which is close to G1. 

 

Lemma 2. Assume that a correct up*/down* directed graph G includes a break node n∈G. Then, 

after the suppression of one of the outgoing up-links of n, G remains correct and connected. 

 



 8

Proof. It is not possible to generate a new cycle by suppressing one of the outgoing up-links of a 

break node. Also, it is not possible to generate a new sink node by suppressing one of the 

outgoing up-links of a break node (by definition a break node has more than one outgoing up-

link). 

 

Lemma 3. Assume that two up*/down* directed graphs Gold and Gnew exist, where Gnew is 

correct and close to Gold. Then, it is possible to obtain an up*/down* routing function R that 

satisfies the routing-restrictions (prohibited down-link to up-link transitions) imposed by both 

Gold and Gnew. 

 

Proof. Assume that Gsub is a subgraph of Gnew in which each link that connects a break node in 

Gold with the corresponding break node in Gnew is suppressed, and that Gnew is a correct 

up*/down* graph.  Then, according to lemma 2, we can guarantee that Gsub is also a correct 

up*/down* graph.  

Thus, it is possible to define a fully connected deadlock-free routing function Rsub over Gsub. Rsub 

satisfies the routing-restrictions of both Gold and Gnew since all the break nodes either have the 

same locations or have been removed. 

3.2   Construction of Gnew close to Gold 

We have shown above that a new up*/down* graph Gnew for the current topology can always be 

constructed close to the previous up*/down* graph Gold such that deadlocks cannot form during 

the routing function update. This section presents an algorithm for the construction of Gnew close 

to Gold, but first we define some concepts. 
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Definition 2. An exploration process is the procedure in which the manager goes through the 

network to discover the links between nodes and the direction assigned to them. 

 

Definition 3. Assume that the exploration process from a node n1 reaches another node n2. Then, 

this link is explored in downward direction (from the point of view of the exploration process) if 

its up*/down* direction is n1←n2. Similarly, the link is explored in upward direction if the 

direction is n1→n2. These cases will be referred to as ldownward and lupward, respectively. 

 

Definition 4. A frontier link is a link currently under evaluation by the exploration process (such 

as the link from n1 to n2 above). 

 

Definition 5. Two directed links are partners if they have the same source node. 

 

Definition 6. Assume that the exploration process has reached a node n, that l is a link connected 

to n, and that l has not been processed from a previously visited node. Then, a neighboring link 

of l is another link connected to n which has not been processed from a previously visited node. 

 

Definition 7. A node is ancestor node of a link if, starting from that link, the node can be 

reached by traversing only up-links. 

 

Definition 8. Two links are relatives if they have common ancestor nodes. 
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Algorithm. 

Let XX be the set of frontier links and let l denote a link between two nodes in the network.  

To construct Gnew the manager starts an exploration process in one of the sink nodes of Gold:  

∀l connected to the start node of the exploration process, evaluate inclusion of l in XX  (see below).  

While XX is not empty do: 

• If ∃l ∈XX explored in downward direction, then 

oo  Remove l from XX..  

oo  ∀l1 which neighboring link of l evaluate inclusion of l1 in  XX..  

• Else the following invariant applies: ∃l1 ∈ XX  explored in upward direction which guarantees that 

!(∃l2 ∈ XX) such that 

o l1 is partner of l2. 

o The destination of l1 is ancestor node of l2.  

o With l1 do: 

 Remove l1 from XX.. 

  ∀l3 which is neighboring link of l1, evaluate inclusion of l3 in XX..  

  If ∃l2 which is partner of l1 and relative to l3 ∈ XX,, then remove l3 from XX..  

 Change the direction of l1. 

 

Evaluation before inclusion of a link in XX.. 

Before including a link l in XX we need to do the following evaluation: 

• If l has previously belonged to XX, then discard l. 

• Else if lupward ∈ XX and l is now explored in downward direction, then update the direction of the 

link such that ldownward ∈ XX..  

• Else if !(l ∈ XX), then 

o If there is no direction assigned to l, then assign the downward direction to l. 

 If l contributes to form a cycle, that is, the source of l is also its ancestor node, then 

change the direction of l. 

o Else l is included in XX with the direction found by the exploration process. 
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4   Performance Evaluation 

In this section we present the simulation study that was undertaken to evaluate our novel 

dynamic reconfiguration scheme, presented in the previous section. For performance assessment 

this scheme was compared to an earlier static reconfiguration scheme, proposed in [12] for 

source routing networks based on the Advanced Switching technology. We compare the time 

required by each scheme to completely assimilate a topology change, and also their impact on 

the network service. Before presenting the simulation results, the experiment setup is described.   

4.1   Experiment Setup 

The simulation model [11] used for this work was developed with the OPNET Modeler [9], and 

embodies the physical and link layers of Advanced Switching, allowing the simulation of several 

network designs. The model implements 16-port multiplexed virtual cut-through switches, where 

each port uses a 1x lane (2.5 Gbps), and endpoints are connected with a single port.  

This model provides the necessary support to design fabric management mechanisms as 

defined in the ASI specification [1]. It includes management entities, device capabilities, and 

management packets. In addition, the model considers the time required by the FM and fabric 

devices to process incoming management packets and perform tasks associated with the 

reception of such packets. 

We evaluated several regular fabric topologies, including meshes, tori, and fixed-arity fat-

trees. A complete list is presented in Table 1. For meshes and tori, we assume that each border 

switch has an endpoint attached. Although the management mechanisms analyzed do not require 

the use of several VCs, we used four virtual channels (VCs) per fabric port. According to the 
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Advanced Switching specification, a minimum of two VCs per port must be in place, where one 

VC is dedicated to management traffic, and the remainder to data traffic [1]. Management traffic 

gets higher scheduling priority than data traffic in switches and therefore it will always take a 

similar time to assimilate a topological change, independently of the amount of data packets in 

the network. The size of the input and output buffers associated with each VC is 8 Kbytes. 

Table 1. The topologies evaluated 

Topology Switches Endpoints Total Devices 
3×3 mesh, 3×3 torus 9 8 17 
4×4 mesh, 4×4 torus 16 12 28 
6×6 mesh, 6×6 torus 36 20 56 
8×8 mesh, 8×8 torus 64 28 92 
9×9 torus 81 32 113 
4-port 2-tree 6 8 14 
4-port 3-tree 20 16 36 
4-port 4-tree 56 32 88 
8-port 2-tree 12 32 44 

 

For all simulations, the data packet length was fixed at 512 bytes. The traffic load that was 

applied was dependent on the fabric topology and the number (and size) of available VCs, 

representing 50% of the saturation rate in each case. The packet generation rate was uniform. 

The perfect shuffle, bit reversal, matrix transpose, and uniform traffic patterns were applied to 

obtain packet destination endpoints. The results for the different traffic patterns were very 

similar, and the results for the uniform traffic pattern were selected for presentation. 

For each simulation there is an initial transient period in which fabric devices are activated, the 

manager gathers the original topology, and the fabric operation approaches its steady state. Later, 

a topological change (either the addition or removal of a randomly chosen fabric switch) is 

scheduled at time 2.0 seconds (after the fabric starts up). In order to increase the accuracy of the 

results, each experiment was repeated several times for each fabric topology. The number of 
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simulation runs for each topology is about 15% of the number of physical nodes (both switches 

and endpoints) for both switch additions and removals, and averages have been drawn from the 

solution set and presented. 

4.2   Impact on the Management Time 

We first analyze the time required to calculate the new up*/down* graph after a topology change 

(Fig. 1). For the proposed dynamic reconfiguration scheme we measure the time spent in the 

“Topology + Close Graph” phase, whereas for the static reconfiguration scheme the time spent in 

the “Topology + New Graph” phase is measured. Both schemes first discover the new fabric 

topology that results from the topology change. In the next step, the static scheme assigns new 

link directions without taking the previous up*/down* graph into account, whereas the dynamic 

scheme transforms the old graph into a close graph by following the algorithm described in the 

previous section. We compare the duration of the topology discovery and graph calculation 

phases for the two schemes. Fig. 1 confirms that the overhead of our proposed dynamic scheme 

is small when compared to the static scheme. In addition, the duration of the topology discovery 

and graph calculation phases is short when compared to the path computation and 
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Fig. 1. The time required by the manager to build a new up*/down* graph for our 
dynamic reconfiguration scheme (Topology + Close Graph) and the static
reconfiguration scheme (Topology + New Graph) as a function of fabric size 
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reconfiguration phases (Fig. 2). 

As a function of the fabric size, Fig. 2 shows the time required by the static and dynamic 

reconfiguration schemes to discover the new topology and build the new routing graph, compute 

the new set of routes, and update the routing tables after a topology change (both switch removal 

and addition are included). We observe that the “Dynamic Reconfiguration” phase spends less 

time updating the routing tables than the “Static Reconfiguration” phase does. The “Static 

Reconfiguration” phase comprises four steps: deactivation of the fabric ports to only allow 

management packets into the network, removal of the information stored at endpoint routing 

tables, distribution of the new routing paths to the endpoints and, finally, the reactivation of the 

fabric ports to allow data packets into the network. Routing tables are inactive during a certain 

period in the path distribution step. The “Dynamic Reconfiguration” phase, on the other hand, 

only comprises the distribution of the new set of routes.  

This also explains why the “Dynamic Reconfiguration” phase uses significantly fewer 

management packets than the “Static Reconfiguration” phase does (these results are not shown 

here due to lack of space). 
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Fig. 2. The time required by the static and dynamic reconfiguration schemes to
completely assimilate a topology change (both switch removal and addition are
included) 
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4.3   Impact on the Network Service 

The number of data packets that are discarded during the topology change assimilation process 

gives an indication of the level of service a network can provide to applications. As a function of 

the fabric size, Fig. 3 compares the amount of packets that are discarded due to a switch removal 

for the static and dynamic reconfiguration schemes. The bars in this figure represent the 

quantities that relate to three different reasons for packets being discarded. They are labelled 

“Protected Ports”, “Inactive Ports” and “Inactive Tables”. The “Protected Ports” label quantifies 

packets that are discarded when they reach (logically) inactive ports (i.e., in the DL_Protected 

state in which ports can only receive and transmit management packets) [1]. The “Inactive Ports” 

label refers to packets that attempt to cross the switch that has been removed from the network, 

in order to reach their destination. Finally, the “Inactive Tables” label refers to the packets that 

can not be injected into the network due to the endpoint routing tables are empty. 

The results in Fig. 3 show that the rate at which data packets are discarded is notably lower for 

the new dynamic reconfiguration scheme than for the static reconfiguration scheme. The 

explanation is that whereas all three possible reasons for discarding packets apply for the static 
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Fig. 3. The amount of application packets discarded as a consequence of a switch
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scheme, for the dynamic scheme packets are only discarded when they attempt to cross the 

removed switch.  

In Fig. 4, the number of data packets discarded for the static and dynamic schemes are 

compared, both for a removal (Fig. 4a) and addition (Fig. 4b) of a switch. Fig. 4a summarizes the 

results presented in Fig. 3a and Fig. 3b (this is done to enable easy comparison of the results for 

a switch addition and removal). No packets are discarded due to inactive ports because no old 

routes include the switch that was just added. Moreover, in this case, there is no packet 

discarding when using the dynamic reconfiguration scheme. The reason is that it does not require 

deactivating fabric ports and routing tables. 

To conclude the evaluation, Fig. 5 illustrates the instantaneous behavior of both the static and 

dynamic schemes. For both schemes, we have scheduled a removal of a switch in a 6×6 mesh at 

time 2.0 sec. For all plots, the x-axis represents the simulation time. The top plot shows the 

aggregate amount of data packets discarded during the assimilation process. The bottom two 

plots show instantaneous network throughput, represented by the number of data packets 

sent/received per second in the whole fabric. 
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Fig. 4. The amount of application packets discarded for both switch removal and
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The static reconfiguration scheme has a detrimental effect on the network service, and we 

observe a gap in the instantaneous throughput plots coinciding to the reconfiguration phase. This 

gap is completely eliminated by using our dynamic reconfiguration scheme. This demonstrates 

that the introduction of the dynamic reconfiguration scheme enables an uninterrupted network 

service during the topology change assimilation.  

5   Conclusions 

We have proposed and evaluated a new deadlock-free dynamic reconfiguration mechanism for 

updating the routing function after a topological change in a network that applies the up*/down* 

routing algorithm. At a minor computational cost, the new routing function is designed to ensure 

that packets routed according to the old and the new routing functions can unrestrictedly coexist 

in the network, without the risk of forming deadlocks. Simulation results show that this 

significantly reduces the amount of packets that are discarded during the topology-change 

assimilation. From the point of view of upper-level applications, our new reconfiguration 

strategy virtually eliminates the problem of reduced network service availability, which is 
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characteristic of traditional reconfiguration proposals. In addition, our proposed strategy does not 

require additional fabric resources such as virtual channels, and it could easily be implemented in 

current commercial systems using either source or distributed routing. 
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