
University of Castilla-La Mancha

A publication of the
Computing Systems Department

Efficient Congestion Management for
High-Performance Interconnection Networks

with Distributed Routing
by

J. Escudero-Sahuquillo, P.J. Garcia, F.J. Quiles, J. Flich, J. Duato

e-mail: jescudero@dsi.uclm.es

(J. Flich and J. Duato belong to Computer Engineering Department.
Technical University of Valencia)

Technical Report #DIAB-10-04-1 April 2010

This work was supported by the Spanish MEC and MICINN, as well as
European Commission FEDER funds, under Grants CSD2006-00046 and

TIN2009-14475-C04. It was also partly supported by JCCM and the
European Commission FSE 2007-2013 fund, under project PCC08-0078

(PhD. grant A08/048).

DEPARTAMENTO DE SISTEMAS INFORMÁTICOS

ESCUELA SUPERIOR DE INGENIERÍA INFORMÁTICA
UNIVERSIDAD DE CASTILLA-LA MANCHA

Campus Universitario s/n
Albacete - 02071 - Spain

Phone +34 967599200, Fax +34 967599224

Abstract

The Interconnection networks are essential elements in current computing
systems, from PC Clusters to Massive Parallel Processors. For this reason,
achieving the best network performance, even in congestion situations, has
been a primary goal in recent years. In that sense, there exist several tech-
niques focused on eliminating the main negative effect of congestion: the
Head of Line (HOL) blocking. One of the most successful HOL blocking
elimination techniques is RECN, which can be applied in source routing
networks. FBICM follows the same approach as RECN, but it has been
developed for distributed deterministic routing networks.

Although FBICM effectively eliminates HOL blocking, it requires too
much resources to be implemented. In this paper we present a new FBICM
version, based on a new organization of switch memory resources, that sig-
nificantly reduces the required silicon area, complexity and cost. Moreover,
we present new results about FBICM, in network topologies no yet ana-
lyzed. From the experiment results we can conclude that a far less complex
and feasible FBICM implementation can be achieved by using the proposed
improvements, while not losing efficiency.

Contents

1 Introduction 3

2 Related Work 5

3 FBICM Basics 7
3.1 Congested Points Identification 7
3.2 Congested Flows Isolation . 9
3.3 Congestion Information Propagation and Flow Control 10
3.4 Congestion Information Storage 11
3.5 Resource Deallocation . 13

4 FBICM Enhancements 15
4.1 Cost-Effective CAM organization 16
4.2 Congestion Propagation Optimization 17
4.3 Faster Resource Deallocation 18

5 Evaluation 20
5.1 Simulation Model . 20
5.2 Results for Uniform Traffic . 23
5.3 Results for Hot-Spot Traffics 24
5.4 Results for Real Traffic . 25
5.5 CAM Memory Requirements 26

6 Conclusions 28

2

Chapter 1

Introduction

The interconnection network is a key element in current parallel computing
systems. In order to reduce its cost there exist some research works which try
to design cost-effective networks using a limited number of resources while
keeping the required performance level. In that sense, current network de-
signs reduce network size in order to reduce power consumption and resource
requirements, according to dropping processor prices. However, as network
size decreases, so does network offered bandwidth, thus increasing the prob-
ability of congestion, as the saturation point of the network is reached with
lower traffic loads. Therefore, congestion is a problem that must be solved
in current cost-effective designs, since its consequences can be disastrous for
network performance.

Specifically, congestion appears when several packet flows persistently re-
quest the same output port inside a switch, then most packets have to stop
and wait for long. Assuming lossless networks (without packet discarding),
buffers containing these blocked packets finally collapse. Moreover, flow con-
trol will propagate congestion to upstream switches, forming “congestion
trees” [5]. When the “leaves” of these congestion trees reach many network
points, the immediate consequence is a severe network performance degra-
dation.

The specific cause of this degradation is that congested flows may share
queues with non-congested flows, thereby the former slowing the advance of
the latter. In detail, in a queue storing packets belonging to congested and
non-congested flows, a “congested packet” reaching the head of the queue
will usually have to wait for a long period before being forwarded, and conse-
quently all the other packets in the queue (both congested and non-congested)
will suffer this delay. This effect is known as Head-Of-Line (HOL) blocking,
and it may limit the throughput of the switch up to about 58% of its peak
value [9].

3

In current high-speed interconnection networks, the use of some tech-
nique for solving the problems related to congestion has become mandatory.
In that sense, many proposed techniques can help to reduce the negative ef-
fects of congestion (see section 2). Among them, one of the most successful is
Regional Explicit Congestion Notification (RECN)[3, 6, 10]. In contrast with
other techniques that try to avoid or prevent congestion, RECN completely
eliminates the HOL blocking, requiring a limited, reduced set of additional
queues per switch port. However, RECN was proposed for networks which
use source routing, so not being applicable in networks where distributed
deterministic routing is present, like Infiniband [8]. In order to cover this
type of networks, Flow-Based Implicit Congestion Management (FBICM)
[4] has been recently put forward. FBICM effectively eliminates HOL block-
ing following the same RECN philosophy, but in networks using distributed
deterministic routing.

However, FBICM presents a drawback that must be solved, since it needs
too much resources to store and propagate congestion information, thus mak-
ing more difficult its real implementation. In order to solve this problem, we
propose in this paper a new version of FBICM, which significantly reduces the
required silicon area, complexity and cost, without losing efficiency. Specifi-
cally, a new, optimized memory organization model together with a new pro-
cedure for congestion propagation (more appropriated for reduced resource
requirements) are proposed and evaluated. Moreover, we present new re-
sults about FBICM efficiency in networks topologies no yet analyzed. From
these evaluation results, we conclude that FBICM achieves the desirable re-
sults for an efficient and feasible congestion control technique, applicable to
interconnection networks with distributed deterministic routing.

The remainder of this paper is organized as follows. Section 2 shows an
overview of the existing related work in the congestion management field.
Next, in section 3 we summarize the basics of the FBICM mechanism, point-
ing out the issues that make difficult its implementation. The new version of
FBICM is described in section 4. In Section 5, FBICM is compared in terms
of performance and resource requirements to other previously proposed HOL
blocking elimination techniques. Finally, in Section 6 some conclusions are
drawn.

4

Chapter 2

Related Work

In recent decades, many strategies for controlling the congestion have been
proposed, motivated by the seriousness of the congestion problem. The sim-
plest ones are overdimensioning the network and/or dropping packets when
congestion arises. However, none of them are appropriated for modern in-
terconnection networks designs due, respectively, to the high cost and con-
sumption of current network components and to the lossless nature of these
networks.

Therefore, other more thorough techniques have been especially proposed
for avoiding or eliminating congestion. For instance, proactive strategies [15]
reserve network resources for each data transmission, thus requiring a traffic
scheduling based on network status information which is not always available.
On the other hand, reactive congestion management [14] notifies congestion
to the sources contributing to its apparition, in order to cease or reduce the
traffic injection from those sources. Regrettably, this approach may be not
efficient due to the delay between congestion detection and notification.

Other strategies directly attack the main negative effect of congestion: the
HOL blocking. In that sense, the most common approach to deal with HOL
blocking is to have different queues at each switch port, in order to separately
store packets belonging to different flows. This is the basic approach followed
by several techniques like Virtual Output Queues (VOQs) [2], Dynamically
Allocated Multiqueues (DAMQs) [13], congestion buffers [12], Destination-
Based HOL Blocking Elimination (DBBM) [11], etc. Among others, the main
differences between all the mentioned techniques are the required number of
queues and the policy for mapping packets to these queues.

In general, traditional HOL blocking elimination techniques are either
feasible or effective, but not feasible and effective at the same time. For
instance, the use of VOQs at network level requires as many queues at each
port as end-points in the network, being so an effective but not scalable tech-

5

nique. A variation of VOQ uses as many queues at each port as output ports
in a switch [1](eliminating switch-wide HOL blocking). So, this technique is
feasible, but it does not eliminate completely network-wide HOL blocking.

By contrast, RECN dynamically eliminates HOL blocking in an efficient
and scalable way, separating congested and non-congested flows in differ-
ent queues. Specifically, RECN adds a set of additional queues (set aside
queues, SAQs) to the standard queues at switch ports. While standard
queues will store non-congested packets, SAQs are dynamically allocated
for storing packets passing through a specific congested point. These SAQs
can be deallocated when congestion vanishes, so RECN uses these resources
efficiently. RECN assumes the use of source deterministic routing, thereby
addressing congested network points by means of explicit routes toward these
points (the entire route is placed at packet headers before injection). Al-
though the RECN mechanism has proved to be very efficient, it presents the
obvious limitation of requiring the use of source deterministic routing.

In that sense, FBICM has been recently proposed for networks which use
distributed deterministic routing, achieving the same performance level as
RECN. In particular, FBICM detects whether some packet is addressed to
some congested point only by means of its destination, which is placed into
packet header. Then, as RECN, FBICM stores congested packets in special
queues, in order to separate congested packets from non-congested ones, thus
eliminating the HOL blocking. As we mentioned above, FBICM presents
difficulties, regarding its application in real systems, since it requires too
many control memory resources, thus its implementation being too complex
and expensive.

In the next section we describe the basics of FBICM: congestion detection
philosophy, congested flows isolation, the way of storing congestion informa-
tion, and the drawback which should be solved by the new version. Later, in
section 4 we present the new, cost-effective FBICM version.

6

Chapter 3

FBICM Basics

The first version of FBICM [4], is an early approach to a congestion man-
agement technique that efficiently eliminates HOL blocking in distributed
deterministic routing networks.

Specifically, FBICM has been proposed for networks using table-based
routing, thus the routing logic at each switch is based on a routing table,
indicating the output port for each incoming packet. We assume routing
tables are filled during network setup according to some routing algorithm.
Furthermore, packets are forwarded inside a switch depending on the packet
destination placed at their header.

On the other hand, FBICM has been developed for Input Queued (IQ)
switches, where queues are only present at input ports. This kind of switches
are very popular, and they are cheaper than Combined Input and Output
Queued (CIOQ) switches, the former requiring less memory and resources
for operating than the latter1.

Next, we focus on how the first version of FBICM detects the congestion,
separates congested and non-congested flows, stores congestion information
and deallocates resources.

3.1 Congested Points Identification

In Fig.3.1 we can see an example to show how FBICM identifies congested
points. We assume a 8-port IQ switch, storing congested packets (in red)
and non-congested packets (in green). In this figure, a contention situation
is created due to packets at the head of the queues in input port P1 and
input port P2, requesting the same output port (P5). Note that there are
also packets that will request P5, in the queues at P3 and P4, thus their will

1Note that the latest RECN version [10] was also designed for IQ switches.

7

contribute to contention sooner or later. If “red” flows persist in time, input
buffers may collapse, appearing congestion and its main negative effect: the
HOL-blocking (red packets will slow the advance of green ones).

Figure 3.1: FBICM Detection Philosophy Diagram.

In order to deal with congestion FBICM requires both a mechanism to
detect congested points and an identification (addressing) criterion, in or-
der to keep track of all the congested points. In that sense, FBICM detects
congestion at switch input queues using a detection threshold. When the
number of packets stored in some input queue exceeds this threshold, a new
congested point is located (in Fig.3.1, we may consider the congestion thresh-
old is exceeded in P1 and P4). Moreover, we assume it is likely the packet
placed at the top of the queue where detection occurs, is part of a flow which
contributes to the congestion situation. The detection method infers this
packet is delaying the normal progress of packets addressed to their different
requested output port. Thus, it is very probably the requested output port of
the top packet will be congested, being the “root” of a growing “congestion
tree”. On the other hand, it is possible that the packet at top of the queue
where detection occurs is not the responsible of this congestion situation,
but this failure is solved by means of post-processing mechanism, which is
afterwards explained.

Regarding identification, a detected congested point could be easily iden-

8

tified inside its switch by its port number. However, any congested point
must be communicated to other switches, in order to deal with all the con-
gested packets along their paths. As the only routing information available
is packet destinations, FBICM addresses a congested point by means of the
destinations of packets crossing that point. In most cases, there will be more
than one destination addressed to the same congested point, so FBICM in-
cludes all “congested destinations” in a list. By means of this list, FBICM
uniquely identifies that congested point. For instance, congested point in
Fig.3.1 would be identified as the port crossed by packets with destinations
0 and 4.

Summing up, once a congestion point a is detected, FBICM builds a list
of congested destinations of packets which will cross that congested point.
This list requires some memory structures to be stored (see section 3.4), and
it will be used for detecting whether some packet belongs to any “congested
flow”, then separating it from non-congested ones, as we explain in the next
section.

3.2 Congested Flows Isolation

Figure 3.2: Input Port Memory Organization.

When a congestion situation is detected, it begins the process of network
congested packets isolation, in order to guarantee the elimination of HOL
blocking. Fig.3.2 shows a switch input port memory organization where
two basic elements are present: RAM Memory and Content Addressable

9

Memory (CAM). The RAM memory is divided in two types of queues: one
Non-Congested Flow Queue (NFQ), for storing non-congested packets, and
a set of Congested Flow Queues (CFQs), for storing congested packets. On
the other hand, a CAM memory is present in each input (and output) port,
being used for storing congestion and CFQ status information (one CAM line
per CFQ is needed). The CAM organization and functionality are described
in next section.

If a congestion detection happens, FBICM dynamically allocates a new
CFQ, together with a CAM line including information about packets which
are contributing to create a congestion situation. In particular, the CAM line
contains a list with all the destinations of packets which will cross a congested
point. Then, all the packets belonging to a specific congested flow will be
stored in the assigned CFQ, not delaying the advance of non-congested ones.
As we explain later, if congestion situation persists in time CFQs may become
filled and congestion information will have to be propagated to upstream
switches, where it is necessary information for isolate the congested flows.

Once congestion has been detected and a CFQ+CAM have been allo-
cated, any packet responsible of the congestion situation must be moved from
the NFQ to the corresponding CFQ. This action is performed by the packet
processing mechanism (post-process) which detects if some packet belongs
to some flow involved in a congestion situation. Basically, when a packet
reaches the top of the NFQ, its destination is checked, in order to compare it
to all the destinations included in the lists that identify congested points. In
the case of matching, the packet belongs to a congested flow. If congested,
the packet is moved to the CFQ and, otherwise, the packet will cross to the
requested output port. Note, the post-process mechanism leaves in the top
of the NFQ only non-congested packets, thus avoiding the HOL blocking
problem. Moreover, this mechanism decides what input port queue (NFQ or
active CFQs) can request an arbitration, which will forward its top packet
to the requested output port. This decision is took based on a first-come
first-served policy, ever giving absolute crossing priority to NFQs. Finally,
another important post-process feature, is the assurance of packet-in-order
delivery.

3.3 Congestion Information Propagation and

Flow Control

In the same way that FBICM sets a congestion detection threshold in the
NFQ, a “Stop” threshold is used, when congestion persists for long, both for

10

avoiding CFQ overflow and for propagating congestion information. Specif-
ically, when the occupancy of a CFQ exceeds the Stop threshold, a Stop
notification containing the information of the associated CAM line is sent to
the upstream switch output port. When an output port receives an external
Stop notification, it checks if there is already an active CAM line containing
the same received information. If not, it will allocate a new CAM line, filling
it with that information (so, active output CAM lines will be exact copies of
downstream CAM lines). On the contrary, if there were already an allocated
CAM for the received information, the Stop notification is considered just
as a flow control message. In both cases (new CAM line allocation or not),
the involved CAM line will be set to Stop state, and as a consequence this
output port will propagate the congestion information to any input port,
sending congested packets to that output port. Therefore, a similar conges-
tion propagation process is followed by FBICM inside a switch. If some input
port receives a Stop notification, it will allocate a new CAM line (if there
were not yet an allocated one), containing the received congestion informa-
tion, together with a CFQ for storing packets belonging to the congested
flow. From this input port, congestion propagation process is repeated, by
using the Stop threshold, in the way detailed above.

Note that, in both cases (output and input ports) the information con-
gestion is all transmitted in every Stop notification (because it is necessary
in order to check upstream allocated CAM lines) and, even in flow control
ones, thus consuming a high fraction of link bandwidth. As we explain later,
the new version of FBICM optimizes the link use.

On the other hand, when the occupancy of a CFQ that sent a Stop noti-
fication decreases enough (until a given “Go” threshold), a Go notification is
sent upstream, with the opposite effect than Stop ones. Thus, upon reception
of a Go notification, an output port CAM line will be set in the Go state,
thus unblocking the flow of packets. In the same way, inside of the switch Go
notifications unblock all the input port CAM lines associated with output
port ones. Therefore, by means of Stop/Go notifications, FBICM performs
the flow control between CFQs.

Summing up, FBICM separates congested and non-congested flows in
separate queues along any path followed by congested packets, thus isolating
the congestion and reducing the HOL blocking apparition at maximum.

3.4 Congestion Information Storage

As we have described above, the congestion and CFQ status information
is stored in a CAM memory, divided into as many number of CAM lines as

11

Figure 3.3: CAM organization Diagram.

CFQs in the input port memory. A detailed schema of the CAM organization
is shown in Fig.3.3. We can distinguish two important blocks of fields: Con-
gestion Flow Identification and Flow Control fields. The later fields are used
by the flow control mechanism between CFQs, while the former are used in
order to identify a congested point. Moreover, there are other fields used for
saving the CAM status, as the “active” field, which indicates whether some
CAM is active or not, and the “timer” field, used in the resource deallocation
process, explained later.

Specifically, in the Congested flow Identification block, “CP” stores the
congested output port number (Px), while “hops” indicates the distance to
that congested point, and “destList” field stores all the destinations that
will cross the congested point. Note that, theoretically, this field should be
dimensioned to include all the possible destinations assigned to any output
port by the routing algorithm. By using this four fields FBICM is able to
identify any congested point inside the network. “CP” and “destList” are
both colored in red because the former is removed in the new version of
FBICM, while the latter is reduced in order to make less complex the CAM
memory.

Regarding Flow Control fields, the field “NextCAM” stores the down-
stream CAM line which the current CAM line is linked to. The remainder
fields are used in order to implement the Stop/Go flow control mechanism
between CFQs.

This CAM organization presents a problem related with the great amount
of memory needed for storing the destination list. Specially, in high-sized
networks, the required space for storing all the destinations contributing to
congestion can be prohibitive, consequently making the real implementation
of FBICM unfeasible. In that sense, we presented in [4] an idea in order to
solve this problem. This solution removes the destination list from CAMs,
moving it to the routing tables. In each row of the routing table some bits
are added, to store what destination is congested and what CAM line or lines
it belongs to (e.g. 44 bits per routing table entry are used for a 4x4 switch

12

and FBICM using 8-CFQs per port). However, this approach is, in fact, un-
feasible because when network size increases, the table complexity increases
as well. As an example, the routing tables in Infiniband [8] can address 48K
destinations, then this method would require a vast amount of additional
bits (e.g. 48K entries each of one containing 44 extra bits). Although we
have thoroughly considered these two options, we have discarded both, since
they increase the switch complexity.

Another important issue of FBICM that must be analyzed, is related to
the number of destinations added to a CAM line at the moment of its allo-
cation. When a congestion detection happens, FBICM stores in a CAM line
all the destinations that will cross the detected congested point, extracting
this information form the routing table. Although packets addressed to all
those destinations could be received in the input port, it is very likely that
only some of them arrive in the near future. Therefore, there exists a splurge
of the resources dedicated to store destinations, which can be excessive in
big networks.

Summing up, it is necessary using a non-speculative criterion to add des-
tinations to the CAM lines, thus reducing the size of CAM memories. In
section 4, we present a solution for this FBICM flaw, based on limiting the
space used for storing destinations.

3.5 Resource Deallocation

Another important issue of FBICM is dynamic, distributed resource deallo-
cation. “Dynamic” because a CFQ can be deallocated during network oper-
ation (Go status), and “distributed” because the CFQs can be deallocated
based on local information, without external orders.

Specifically, if a CFQ becomes empty and CFQ status is non-blocked
(Go), it will be deallocated releasing the resources used by CFQ and CAM.
The upstream linked CFQ, will be informed by means of deallocation noti-
fications and it will update the “NextCAM” field to null, “unhooking” this
branch of the congestion tree.

The problem of resource deallocation is related with the “speculative”
approach of adding destinations to the CAM lines, described above. In that
sense, the deallocation of a CAM line containing too much destinations in
its list will be more difficult, since it is very likely that its associated CFQ
contains always some packet. This problem is bigger in larger networks where
a CAM line could contain a lot of unnecessary destinations.

In the next section, we propose a new version of FBICM that solves the
problem of adding destinations in an speculative way. Moreover, this new

13

proposal reduce the complexity of CAM memory, by reducing the number
of destinations stored in any CAM line. Additionally, our new technique
optimizes the way congestion information is propagated, thus achieving an
efficient link utilization. As a consequence of these enhancements, we reduce
switch complexity, keeping the excellent network performance when conges-
tion arises.

14

Chapter 4

FBICM Enhancements

As we have pointed out in the previous section, FBICM requires a lot of
resources in order to store and propagate the congestion information, since
it uses a “speculative” approach for filling destination lists in the case of
congestion detection. Moreover, this way of adding destinations to lists slows
down the resource deallocation process, and delays the advance of packets
not actually congested; this problem is bigger as greater is the size of the
network.

In this section, we present a new version of FBICM that solves the prob-
lems related to this congestion information storage and propagation. Specif-
ically, we propose a new, less-complex CAM organization that efficiently
stores congestion information. Besides, we define a new congestion notifi-
cation procedure which requires a few bits for transmitting the congestion
information, thus reducing link use.

As a consequence of this enhancements, we achieve three important ben-
efits:

• A cost-effective CAM organization, which reduces its size requirements.

• An optimal link use, as notifications are redefined in order to reduce
their transmission time.

• A fast resource deallocation, since CAM destination lists contains less
destinations, thus being easier to deallocate.

Our new proposal follows the same philosophy as the previous version for
detecting congestion, since it maintains the congestion detection mechanism,
as well as the post-process mechanism and Stop/Go thresholds; as explained
in section 3. In the remainder of this section we describe the important
changes we have introduced in FBICM, together with a reduced number of
small improvements that contribute to make better our proposal.

15

4.1 Cost-Effective CAM organization

The new proposed CAM organization differs from the previous one basically
in two fields: “CP” and “destList” (see Fig. 3.3). The former is removed
because we only need two fields for identify a congested flow: “hops” to
reach the congested point and “destList” only including destinations really
contributing with congestion. Regarding destination list, we have fixed a low
maximum size for that list in each CAM line. This important change, a priori
insignificant, obligates to redefine the way destinations are added to the list,
as only destinations contributing to congestion should be added. In this way,
the required resources for storing congestion information are significantly re-
duced. Note that with this restriction, it would be possible that a CAM
line does not have enough space to include all the destinations involved in a
congestion situation. However, in these cases, packets addressed to destina-
tions not included in the list will not be stored in CFQs, and will continue
contributing to congestion, thus a new detection for those destinations will
happen, allocating a new CFQ for them. In this way, congested flows may
be “splitted” in different CFQs, but always controlled.

Figure 4.1: Example of the new FBICM congestion information storage.

In Fig. 4.1 we can see an example of the new FBICM operation. The
Switch B receives packets from four switches which address their packets to
the destinations colored in green and red. Packets addressed to red desti-
nations are contributing with the congestion situation at P5, thus delaying
the packets addressed to green colored destinations. We assume that the
maximum size of “destList” is set to two destinations, therefore, we need
more than one CAM line in order to store all the destinations of packets
contributing to congestion. It is important to notice, that destinations lists
are dynamically filled, thus storing only destinations of packets which are

16

actually creating congestion. In that sense, the post-process mechanism is
in charge of, besides its described task, either add new destinations to a
existing destination list or, if the destination list becomes full, allocating
new CAM lines (together with its corresponding CFQs) for storing other
congested packet destinations.

On the other side, along with this new CAM organization, we have in-
cluded another simple improvement to FBICM. When none CAM line is
allocated, it is not necessary to postprocess any packet, so it does not make
sense that the corresponding CAM line silicon area are wasting power. In that
sense, CAM memories are provided with a bit in order to activate/deactivate
the memory, when congestion arises/vanishes in the network. Therefore,
with this simple “CAM activation bit” FBICM reduces the power consump-
tion and operates in a simpler and more efficient way.

Summing up, due to these features, only the information really related to
the congestion are added into the CAM lines, thus improving the previous
speculative way of storing congestion information. Moreover, CAM lines
will be deactivated when congestion are not present in the network, thus
reducing FBICM power consumption. As a result, we consider that new
CAM organization is cost-effective, since it uses few resources for storing
congestion information, thus improving the previous FBICM version.

4.2 Congestion Propagation Optimization

In the new FBICM version we propose a new notifications scheme which
reduces link bandwidth use, since it fits the new CAM organization which
“splits” the entire congestion tree branches into some parts, each of them
stored independently.

Specifically, the new version of FBICM defines this types of notifications:

• Allocation: it is sent when a CFQ exceeds the Stop threshold in order
to allocate a new CAM line in the upstream switch. It contains infor-
mation to identify the congested point and it is sent when congestion
information must be propagated.

• Update: At the moment of sending an allocation it is possible that not
all the packet destinations contributing to congestion are present in the
CAM line. Therefore, update notifications are sent to propagate new
destinations participating in the congestion.

• Stop/Go: They are only used for flow control between CFQs, only
including information about the “NextCAM” field (see Fig.3.3) which is
enough for indicating the CAM line which must be blocked/unblocked.

17

• Deallocation: As flow control notifications, it only includes the “NextCAM”
field. This notifications are used for resource deallocation, as we explain
later.

In Fig.4.1, some ingress CAM lines (and their corresponding CFQs) have
been allocated in P1 in order to identify a single congested point. There-
fore, only packets addressed to current destinations-in-CAM are stored in
the corresponding CFQs. When the number of packets of some CFQ ex-
ceeds the Stop threshold an “Allocate” notification, containing the infor-
mation for identifying the congested point (“hops” and “destList”) along
with “NextCAM” field, is sent to the upstream switch (Switch “A” in the
Fig.4.1). The congested point identification information, is completely sent
only in “Allocate” notifications (thus never in other notifications), thus sav-
ing link bandwidth occupancy. When some “Allocate” is sent and accepted
at the upstream switch, the “sentStop” and “mapped” bits are set to true.

If a new destination is added to the CAM line #1 of the P1 when the
“mapped” bit is activated, an “Update” notification, containing this new des-
tination together with “NextCAM” field value, is sent to the the upstream
CAM line, since congestion information must be updated. The “Update” no-
tifications automatically propagates the new congested destination through-
out the congestion tree, so adding such destination to all the linked CAM
lines.

On the other hand, the flow control between CFQs is performed by the
Stop/Go notifications, in the same way as in the first FBICM version, but us-
ing less space for storing the required information. Specifically, Stop/Go no-
tifications only needs the “NextCAM” field value, for detecting which CAM
line are going to be blocked/unblocked. Finally, the “deallocation” notifica-
tions are sent when some CFQ becomes empty, and whether its associated
CAM line fulfils the deallocation conditions; this deallocation process is de-
scribed in next section.

In conclusion, with the new notifications scheme FBICM uses smaller
notifications, thus reducing the use of link bandwidth.

4.3 Faster Resource Deallocation

As in the previous version of FBICM, the dynamic and distributed resource
deallocation process begins when a CFQ satisfy some conditions: do not con-
tain any packet, and its associated CAM line is in Go status. If some CAM
line is deallocated, and it has the “mapped” bit set to true, a “Deallocation”
notification is sent to upstream switch (or input port linked CAM line) in-

18

forming about the new situation. The process continues as CFQs become
empty, in a distributed and dynamic way.

Notice that, in the new version of FBICM, if congestion are vanishing,
it is more likely a CFQ becomes empty faster than in previous version of
FBICM. In particular, the destination lists of our new proposal contains less
destinations than the ones in the first FBICM version. Therefore, the number
of stored packets is smaller, easing the CFQ+CAM deallocation. Moreover,
in the new FBICM version the arbiter gives more priority for crossing toward
the output ports to packets belonging to “unlinked” CFQs (“NextCAM” bit
set to null), because we assume this type of CFQs have higher probability of
being deallocated, due to congestion is vanishing.

Summing up, a faster resource deallocation process is performed in the
new version of FBICM, since less destinations are included in the CAM line
and, therefore, it is less likely to find packets in the CFQ when congestion is
vanishing.

19

Chapter 5

Evaluation

In this section we evaluate the new version of FBICM by comparing it to
other HOL blocking elimination techniques, as Virtual Output Queues at
network level (VOQNet), Virtual Output Queues at switch level (VOQSw)
and Destination-Based HOL Blocking Elimination (DBBM). First, we de-
scribe the simulation tool and the different traffic patterns used in our ex-
periments, as well as the network configurations where that experiments have
taken place. Next, we present and analyze the obtained results in terms of
normalized network throughput. Finally, we present a study of CAM re-
sources required by both FBICM versions.

5.1 Simulation Model

The simulation tool used in our experiments is an ad-hoc, event-driven simu-
lator modeling interconnection networks at cycle level. The simulator models
different types of network topologies (e.g. perfect shuffle, butterfly, . . .), by
defining the number of switches, endnodes and links. In our experiments, we
model fat-trees (k -ary n-trees) with different network sizes. In particular, we
use the network configurations shown in Table 5.1.

Network Size Interconnection Pattern #Switch radix #Switches (total) #Stages
#1 64 × 64 4 -ary 3 -tree 8 48 3
#2 256 × 256 4 -ary 4 -tree 8 256 4

Table 5.1: Evaluated network configurations

Regarding link model, we use the same link model for all network con-
figurations. In particular, we assume serial full-duplex pipelined links with
1GByte/s of bandwidth and 1 nanoseconds for link delay, both for switch-
to-switch links as node-to-switch links.

20

We assume table-based, distributed routing has been modeled, thus in
these cases the routing algorithm has been used for filling the routing ta-
bles. For our experiments we have used the FIR-based deterministic routing
algorithm described in [7].

Regarding message switching policy, we assume Virtual Cut-Through.
Moreover, in all the switches, the flow control policy is a credit-based mech-
anism at the queue level. Packets are forwarded from input memories to
output ports through a multiplexed crossbar, modeled with a speedup of 1
(link bandwidth is equal to crossbar bandwidth).

The modeled switch architecture follows the IQ scheme, thus RAM mem-
ories have been modeled at each input port of the switch, with different sizes
depending on the simulated HOL blocking elimination technique. Specif-
ically, the simulator models the following HOL blocking elimination tech-
niques:

• FBICM. We use a memory of 8 KB per input port, which is divided in
a 8 CFQs and 1 NFQ. Moreover, there are CAMs both at input and
output ports. We have fixed the maximum number of destinations per
destination list at 8.

• Single Queue. This is the simplest case, with only one queue at each
input port for storing all the incoming packets. Hence, there is no HOL-
blocking reduction policy at all, thus this scheme allows to evaluate the
performance achieved by the “alone” FIR-based deterministic routing
algorithm. 8 KB memories are used for this case.

• DBBM. As in the previous scheme, a memory of 8 KB per input port
is assumed, statically and equally divided among all configured DBBM
queues in the port. Each queue is assigned to a set of destinations
according to the modulo-mapping function assigned−queue−number =
destination MOD number−of−queues. We consider 8 queues per port
for DBBM.

• VOQSw. 8 KB memories per input port are used, statically and equally
divided into as many queues as switch output ports, in order to store
each incoming packet in the queue corresponding to its requested out-
put port. As the number of queues equals switch radix, 8 queues per
input port are used.

• VOQNet. This scheme, although the most effective one, requires a
greater memory size per port, because the memory must be splitted into
as many queues as endnodes in the network, and each queue requires

21

a minimum size. Considering flow control restrictions, packet size, link
bandwidth and link delay, we fix the minimum queue size to 256 bytes,
which implies input port memories of 16 KB for the 64 × 64 networks
and 64 KB for the 256× 256 networks. This scheme is actually almost
unfeasible, thus it is considered only for showing theoretical maximum
efficiency in HOL-blocking elimination.

Notice that we have used the same amount of memory for FBICM,
DBBM, VOQSw and Single Queue, but not for VOQNet which needs larger
memories.

The endnodes are connected to switches through Input Adapters (IAs).
Every IA is modeled with a fixed number of admittance queues (as many as
destinations in the network, in order to avoid HOL-blocking before packet
injection), and a variable number of injection queues, which follows the same
selected scheme as queues at input port memories (both for FBICM technique
and for DBBM, VOQSw, VOQNet and Single Queue schemes). A generated
message is completely stored in a particular admittance queue assigned to its
destination. Then, the stored message is packetized before being transferred
to an injection queue. We use 64-byte packets.

Regarding traffic loads, we use both synthetic traffic patterns (in order
to simulate ideal traffic scenarios) and storage area network (SAN) traces.
The considered synthetic traffic patterns are shown in table 5.2. Three traffic
patterns have been modeled for each network configuration:

• Completely uniform (random) destination distribution (cases #1 and
#4 from table 5.2).

• Single end-node hot-spot (cases #2 and #5). A percentage of sources
(25%) generate traffic addressed to a unique, hot-spot destination,
thereby creating congestion.

• Multiple end-node hot-spot (cases #3 and #6). Similarly, a percentage
of sources (25%) generate traffic addressed to a set of multiple desti-
nations, thus creating congestion at internal points of the network.
Particularly, this traffic pattern creates heavy congestion situations in
intermediate points of networks (multiple destinations crossing a single
hot-spot), being a corner-case for the new version of FBICM, but not
for other techniques.

In all these patterns, packet generation rate is indicated as a relative
percentage of link bandwidth. Note that, in case in cases #1 and #4, random
generation rate is incremental, thus increasing the traffic rate from 0% up to

22

100% of link bandwidth. However, traffic patterns #2, #3, #5 and #6 have
been used to obtain performance results as a function of time, in order to
show the impact of a sudden congestion situation (which arises between the
time instants 1000 µs and 1300 µs).

Random Traffic Hot-Spot Traffic
Traffic Network # Srcs Dest Generation # Srcs Dest Generation Start End
case (BMIN) rate rate time time
1 64 × 64 100% random incremental 0% - - - -
2 64 × 64 75% random 100% 25% 32 100% 1000 µs 1300 µs
3 64 × 64 75% random 100% 25% Multiple 100% 1000 µs 1300 µs
4 256 × 256 100% random incremental 0% - - - -
5 256 × 256 75% random 100% 25% 123 100% 1000 µs 1300 µs
6 256 × 256 75% random 100% 25% Multiple 100% 1000 µs 1300 µs

Table 5.2: Synthetic traffic patterns used in the evaluation

Regarding SAN traces, we use the ones provided by Hewlett-Packard
Labs, and they include all the I/O activity generated from 1/14/1999 to
2/28/1999 at the disk interface of the cello system. As these traces are
eleven years old, we apply several time compression factors to the traces. Of
course, only results as a function of time are shown in this case. Traces are
used for network configuration #1 (see table 5.1).

In all the experiments, the simulator offers different metrics but, for our
evaluation, we have only considered network throughput (as a function of
time or traffic load) as the main metric for measuring the performance of the
networks when the different HOL blocking elimination techniques are used.
Consequently, in the following subsections we analyze, by means of these
metrics, the obtained network performance.

5.2 Results for Uniform Traffic

Figures 5.1a and 5.1b respectively show the normalized network throughput
simulation results as a function of traffic load, for network configurations #1
and #2 (traffic patterns #1 and #4). As we can see, in both figures FBICM
achieves the best performance, at the level of VOQNet and VOQSw. Due
to the uniform traffic properties, along with routing algorithm benefits, the
congestion situations are very short in time and they occur in many differ-
ent network points, thus none of these techniques faces great difficulties for
keeping network performance at a good level. DBBM achieves worse results
as higher are both the network size and the traffic loads, because the number
of destinations that must be mapped to its queues is greater. The Single
Queue scheme achieves the poorest results in both sizes of networks since it

23

is affected by the apparition of the HOL blocking. Therefore, FBICM and
VOQSw achieve similar results to VOQNet, but using less memory resources
(VOQNet needs 16KB memories for 64 × 64 networks and 64KB memories
for 256 × 256).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

N
et

w
or

k
T

hr
ou

gh
pu

t (
no

rm
al

iz
ed

)

Time (nanoseconds)

1Q
DBBM
FBICM

VOQSw
VOQNet

(a) Network Configuration #1. Traffic Pat-
tern #1.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1
N

et
w

or
k

T
hr

ou
gh

pu
t (

no
rm

al
iz

ed
)

Time (nanoseconds)

1Q
DBBM
FBICM

VOQSw
VOQNet

(b) Network Configuration #2. Traffic Pat-
tern #4.

Figure 5.1: Network Efficiency versus Generated traffic. Uniform distribution
of packet destinations.

5.3 Results for Hot-Spot Traffics

When we use Hot-Spot traffic scenarios, where congestion suddenly arises,
the obtained simulation results are quite different. The Figures 5.2a and
5.2b show throughput as a function of time, when the traffic pattern #2
and #5 (Single End-Node Hot-Spot) are generated in the network. In both
cases, FBICM newly achieves the best performance, at level of VOQNet. By
contrast, the throughput of VOQSw and DBBM (and of course Single Queue)
decreases in the moment congestion arises. DBBM falls half (to 65% in both
figures) with respect to VOQSw, since the former, with low traffic loads and
equal number of queues, reacts better to congestion situations. The Single
Queue (1Q) throughput is rather poor, and its recovery due to congestion is
very slow.

The Figures 5.3a and 5.3b depict the simulation results when traffic pat-
terns #3 and #6 (Multiple End-Node Hot-Spot) are used. Notice that, this
traffic pattern has been used to generate hot spots which are crossed by
multiple destinations, in order to check the new version of FBICM in the
worst case for that technique (we have defined the maximum number of des-
tinations per CAM line in 8). For that reason, other techniques as DBBM

24

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

N
et

w
or

k
T

hr
ou

gh
pu

t (
no

rm
al

iz
ed

)

Time (nanoseconds)

1Q
DBBM
FBICM

VOQSw
VOQNet

(a) Network Configuration #1. Traffic Pat-
tern #2.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

N
et

w
or

k
T

hr
ou

gh
pu

t (
no

rm
al

iz
ed

)

Time (nanoseconds)

1Q
DBBM
FBICM

VOQSw
VOQNet

(b) Network Configuration #2. Traffic Pat-
tern #5.

Figure 5.2: Network Efficiency versus Time. Single End-Node Hot-Spot.

and VOQSw are able to manage this traffic better than the previous traffic
pattern. As we can see, FBICM achieves excellent results, even using this
“corner-case” traffic, in all the network configurations, reaching the level of
VOQNet, but using less resources.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

N
et

w
or

k
T

hr
ou

gh
pu

t (
no

rm
al

iz
ed

)

Time (nanoseconds)

1Q
DBBM
FBICM

VOQSw
VOQNet

(a) Network Configuration #1. Traffic Pat-
tern #3.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

N
et

w
or

k
T

hr
ou

gh
pu

t (
no

rm
al

iz
ed

)

Time (nanoseconds)

1Q
DBBM
FBICM

VOQSw
VOQNet

(b) Network Configuration #2. Traffic Pat-
tern #6.

Figure 5.3: Network Efficiency versus Time. Multiple End-Node Hot-Spot.

5.4 Results for Real Traffic

Finally, we evaluate network performance when real traffic (I/O SAN traces)
are used as traffic load, in the network configuration #1 of table 5.1. As
can be seen in figures 5.4a and 5.4a FBICM achieves similar results as VO-
QNet, and slightly better than DBBM and VOQSw, regardless of the traces

25

compression factor. Therefore, FBICM also achieves more than acceptable
results for real traffic.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

N
et

w
or

k
T

hr
ou

gh
pu

t (
no

rm
al

iz
ed

)

Time (nanoseconds)

1Q
DBBM
FBICM

VOQSw
VOQNet

(a) Network Configuration #1 (CF=20).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

N
et

w
or

k
T

hr
ou

gh
pu

t (
no

rm
al

iz
ed

)

Time (nanoseconds)

1Q
DBBM
FBICM

VOQSw
VOQNet

(b) Network Configuration #1 (CF=40).

Figure 5.4: Network Efficiency versus Time. Real Traffic.

5.5 CAM Memory Requirements

Network Previous FBICM version New FBICM version

Size CAM size (bytes) CAM size (bytes)

1 64 × 64 1.072 176

2 256 × 256 4.144 176

3 1024 × 1024 16.432 176

Table 5.3: Comparative between CAM size in previous and current FBICM
versions.

Finally, in this section we present a comparison of the CAM memory
requirements for both the first and new versions of FBICM. Table 5.3 shows
the CAM space required by both versions for different network sizes. We
assume that one CAM line without “destList” field needs 6 bytes (4 bytes
for “timer” field plus 2 bytes for the other fields) of memory. Moreover,
we consider 8 lines per CAM memory, thus 48 bytes are required in order
to store all the information except the destinations lists, and 2 bytes are
required for each destination, thus the first version of FBICM stores as many
destinations per CAM line, as the end-nodes in the network. For instance,
64 destinations should be stored per CAM line in a 64×64 BMIN; therefore,
128 bytes per CAM line are required. As we assume 8 lines per CAM, 1024
bytes are required for storing all the destination lists, and 1072 bytes are

26

required for the entire CAM memory. For the new version of FBICM we
assume 8 destinations per CAM line are stored regardless network size, thus
reducing the space for storing destinations to 176 bytes.

As can be seen in table 5.3 only a few of bytes are required for storing
the congestion information when the new FBICM version of FBICM is used.

27

Chapter 6

Conclusions

In the current interconnection networks designs solving the negative effects
of congestion has became of vital importance. In that sense, many strategies
for dealing with congestion have been proposed. Among the most successful
techniques are RECN (used in source routing networks) and FBICM (used
in deterministic distributed routing networks). Both techniques are based
on dynamically allocating queues to separate congested and non-congested
packets, thus eliminating HOL blocking.

The way the first version of FBICM identifies congested points triggers
the need for a huge number of resources, in order to store and propagate
the congestion information. In this paper, we have presented a new version
of FBICM which reduces the number of required resources, without losing
efficiency. We achieve it by assigning resources only when strictly required,
in a non-speculative way.

From the evaluation results, we can conclude that the new version of
FBICM exhibits excellent performance for distributed routing networks, reach-
ing the level of VOQNet, but using less resources and performing other tech-
niques which require a similar number of resources. FBICM achieves these
performance independently on the traffic type (synthetic or real). In conclu-
sion, the new version of FBICM is a cost-effective technique that efficiently
eliminates HOL blocking, in distributed routing interconnection networks.

28

Bibliography

[1] T. Anderson, S. Owicki, J. Saxe, and C. Thacker. High-speed switch
scheduling for local-area networks. ACM Transactions on Computer Systems,
11(4):319–352, November 1993.

[2] W. Dally, P. Carvey, and L. Dennison. Architecture of the Avici terabit
switch/router. In Proceedings of the 6th Symposium on Hot Interconnects,
pages 41–50, 1998.

[3] J. Duato, I. Johnson, J. Flich, F. Naven, P. J. Garćıa, and T. Nachiondo. A
new scalable and cost-effective congestion management strategy for lossless
multistage interconnection networks. In Proceedings of the 11th Symposium
on High Performance Computer Architecture (HPCA), 2005.

[4] J. Escudero-Sahuquillo, P. J. Garćıa, F. J. Quiles, J. Flich, and J. Duato.
FBICM: Efficient congestion management for high-performance networks us-
ing distributed deterministic routing. In HiPC, pages 503–517, 2008.

[5] P. J. Garćıa, J. Flich, J. Duato, I. Johnson, F. J. Quiles, and F. Naven.
Dynamic evolution of congestion trees: Analysis and impact on switch archi-
tecture. Lecture Notes in Computer Science (HiPEAC 2005), 3793:266–285,
November 2005.

[6] P. J. Garćıa, J. Flich, J. Duato, I. Johnson, F. J. Quiles, and F. Naven. Ef-
ficient, scalable congestion management for interconnection networks. IEEE
Micro, 26(5):52–66, September 2006.

[7] C. Gomez, F. Gilabert, M. Gomez, P. Lopez, and J. Duato. Deterministic
versus adaptive routing in fat-trees. In Workshop on Communication Archi-
tecture on Clusters, as a part of IPDPS’07, page 235, March 2007.

[8] InfiniBand Trade Association. InfiniBand architecture specification volume 1.
Release 1.0, Oct. 2000.

[9] M. J. Karol, M. G. Hluchyj, and S. P. Morgan. Input versus output queueing
on a space-division packet switch. IEEE Trans. on Commun., COM-35:1347–
1356, 1987.

[10] G. Mora, P. J. Garćıa, J. Flich, and J. Duato. RECN-IQ: A cost-effective
input-queued switch architecture with congestion management. In Proceed-
ings of 36th International Conference on Parallel Processing (ICPP’07), 2007.

[11] T. Nachiondo, J. Flich, and J. Duato. Destination-based hol blocking elimi-
nation. In 12th International Conference on Parallel and Distributed Systems
(ICPADS 2006), pages 213–222, July.

29

[12] A. Smai and L. Thorelli. Global reactive congestion control in multicomputer
networks. In Proc. 5th Int. Conference on High Performance Computing,
1998.

[13] Y. Tamir and G. Frazier. Dynamically-allocated multi-queue buffers for vlsi
communication switches. IEEE Transactions on Computers, 41(6), June
1992.

[14] M. Thottetodi, A. Lebeck, and S. Mukherjee. Self-tuned congestion control
for multiprocessor networks. In Proc. of 7th. Int. Symp. on High Performance
Computer Architecture, February 2001.

[15] M. Wang, H. J. Siegel, M. A. Nichols, and S. Abraham. Using a multipath
network for reducing the effects of hot spots. IEEE Transactions on Parallel
and Distributed Systems, 6(3):252–268, March 1995.

30

