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Abstract

Similarity search in a large collection of stored objects in a metric database

has become a most interesting problem. The Spaghettis is an efficient metric

data structure to index metric spaces. However, for real applications, where it

is necessary to process large volumes of generated data, mechanisms to increase

processing capacity are required. In this sense, the parallelization of metric

structures is an interesting field of research. The recent appearance of GPU s

for general purpose computing platforms offers powerful parallel processing ca-

pabilities. In this paper we propose a GPU -based implementation for Spaghettis

metric structure. Firstly, we have adapted Spaghettis structure to GPU -based

platform. Afterwards, we have compared both sequential and CPU -based im-

plementations to analyse the performance, showing significant improvements in

terms of time reduction, obtaining values of speed-up close to 10. Besides, the

energy consumption has been reduced in 80.14% by using a GPU instead of a

CPU.

keywords: Databases, similarity search, metric spaces, algorithms, data struc-

tures, parallel processing, GPU, CUDA.
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1 Introduction

In the last decade, the search of similar objects in a large collection of stored objects in

a metric database has become a most interesting problem. The use of these techniques

can be found in different applications such as voice and image recognition, data mining,

plagiarism and many others. A typical query for these applications is the range search

which consists in obtaining all the objects that are at a definite distance from the

consulted object.

1.1 Similarity Search in Metric Spaces

Similarity is modeled in many interesting cases through metric spaces and the search

of similar objects through range search or nearest neighbour. A metric space is a set X

with a distance function d : X
2 → R, so that ∀x, y, z ∈ X; then there must be properties

of positiveness (d(x, y) ≥ 0 and d(x, y) = 0) iff (x = y), symmetry (d(x, y) = d(y, x))

and triangle inequality (d(x, y) + d(y, z) ≥ (d(x, z)).

In a metric space (X,d), a finite data set Y ⊆ X, a series of queries can be made.

The basic query is the range query, a query being x ∈ X and a range r ∈ R. The

range query around x with range r is the set of objects y ∈ Y such that d(x, y) ≤ r.

A second type of query that can be built using the range query is k nearest neighbour,

the query being x ∈ X and object k. Neighbors k nearest to x are a subset A of objects

Y, such that if |A| = k and an object y ∈ A does not exist an object z 6∈ A such that

d(z, x) ≤ d(y, x).

Metric access methods, metric space indexes or metric data structures are different

names for data structures built over a set of objects. The objective of these methods

is to minimize the amount of distance evaluations made to solve the query. Searching
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methods for metric spaces are mainly based on dividing the space using the distance

to one or more selected objects. As they do not use particular characteristics of the

application, the algorithm works with any type of objects [1].

Among other important characteristics of metric structures, we can mention that

some methods may work only with discrete distances, while others also accept contin-

uous distances. Some methods are static, since the data collection cannot grow once

the index has been built. Others accept insertions after construction. Some dynamic

methods allow insertions and deletions once built the index.

Metric space data structures can be grouped in two classes [1], clustering-based

and pivots-based methods.

The clustering-based structures divide the space into areas, where each area has

a so-called center. Some data is stored in each area, which allows easy discarding the

whole area by just comparing the query with its center. Algorithms based on clustering

are better suited for high-dimensional metric spaces, which is the most difficult problem

in practice. Some clustering-based indexes are BST [2], GHT [3], M-Tree [4], GNAT

[5], EGNAT [6], and SAT [7].

There exist two criteria to define the areas in clustering-based structures: hyper-

planes and covering radius. The former divides the space in Voronoi partitions and

determines the hyper plane the query belongs to according to the corresponding center.

The covering radius criterion divides the space in spheres that can be intersected and

one query can belong to one or more spheres.

The Voronoi diagram is defined as the plane subdivision in n areas, one per each

center ci of the set {c1, c2, . . . , cn} (centers) so that a query q ∈ ci area, if and only if

the Euclidean distance d(q, ci) < d(q, cj) for every cj, with j 6= i.

In the pivots-based methods, a set of pivots are selected and the distances between
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the pivots and database elements are precalculated. When a query is made, the query

distance to the pivots is calculated and the triangle inequality is used to discard the

candidates. Its objective is to filter objects during a request through the use of a

triangular inequality, without really measure the distance between the object under

request and the discarded object.

An abstract view of this kind of algorithms is the following:

• A set of k pivots ({p1, p2, . . . , pk} ∈ X) are selected. During indexing time, for

each object x from the database Y, the distance to the k pivots (d(x, p1), . . . , d(x, pk))

is calculated and stored.

• Given a query (q, r), the result d(pi, x) ≤ d(pi, q)+d(q, x) is obtained by triangular

inequality, with x ∈ X. In the same way, d(pi, q) ≤ d(pi, x) + d(q, x) is obtained.

From these inequations, it is possible to obtain a lower bound for the distance

between q and x given by d(q, x) ≥ |d(pi, x)− d(piq, q)|. Thus, the objects x are

the objects that accomplish with d(q, x) ≤ r, and then the rest of objects that

do not accomplish with |d(q, pi)− d(x, pi)| ≤ r can be excluded.

Many indexes are trees, and, the children of each node define areas of space.

Range queries traverse the tree, entering into all the children whose areas cannot be

proved to be disjoint with the query region. Other metric structures are arrays; in

this case, the array usually contains all the objects of the database and mantains the

distances to the pivots.

The increased size of databases and the emergence of new types of data, where

exact queries are not needed, creates the need to raise new structures to similarity

search. Moreover, real applications require that these structures allow them to be

stored in secondary memory efficiently, consequently optimized methods for reducing

the cost of disk accesses are needed.
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Finally, the need to process large volumes of generated data requires to increase

processing capacity and so to reduce the average query times. In this context, the study

is relevant in terms of parallelization of algorithms and distribution of the database.

1.2 Parallelization of Metric Structures

Currently, there are many parallel platforms for the implementation of metric struc-

tures. In this context, basic research has focused on technologies for distributed mem-

ory applications, using high level libraries for message passing as MPI [8] or PVM [9],

and shared memory, using the language or directives of OpenMP [10].

In [11] and [12] we can find information about testing done on the MTree; in this

case, the authors focus their efforts to optimize the structure to properly distribute the

nodes on a platform of multiple disks and multiple processors.

Some studies have focused on different structures parallelized on distributed mem-

ory platforms using MPI or BSP. In [13] several methods to parallelize the algorithms

of construction and search on EGNAT, analyzing strategies for distribution of local

and/or global data within the cluster, are presented. In [14] the problem of distribut-

ing a metric-space search index based on clustering into a set of distributed memory

processors, using List of Clusters like base structure, is presented.

A few works have been done on platforms different than clusters of PCs. [15]

is an example of clustering-based structure on a global index. This strategy can be

considered as an efficient strategy for processing queries in P2P systems composed of

super-peers and peers.

In terms of shared memory, [16] proposes a strategy to organize metric-space

query processing in multi-core search nodes as understood in the context of search
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engines running on clusters of computers. The strategy is applied in each search node

to process all active queries visiting the node as part of their solution which, in general,

for each query is computed from the contribution of each search node. Besides, this

work proposes mechanisms to address different levels of query traffic on a search engine.

Most of the previous and current works developed in this area are carried out

considering classical distributed or shared memory platforms. However, new computing

platforms are gaining in significance and popularity within the scientific computing

community. Hybrid platforms based on Graphics Processing Units (GPU) is example.

In the present work we show a version of the pivot-based metric structure called

Spaghettis [17] implemented on GPU-based platform. There are very little work in

metric spaces developed in this kind of platforms. In Section 2.2 we show related work

in this area.

2 Graphics Processing Units

The era of single-threaded processor performance increases has come to an end. Pro-

grams will only increase in performance if they utilize parallelism. However, there are

different kinds of parallelism. For instance, multicore CPUs provide task-level par-

allelism. On the other hand, Graphics Processing Units (GPUs) provide data-level

parallelism.

Current Graphics Processing Units (GPU s) consist of a high number (512 in

current devices) of computing cores and high memory bandwidth. Thus, the GPU

offers a new opportunity to obtain short execution times. They can offer 10x higher

main memory bandwidth and use data parallelism to achieve up to 10x more floating

point throughput than the CPUs [18].
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GPUs are traditionally used for interactive applications, and are designed to

achieve high rasterization performance. However, their characteristics have led to the

opportunity to other more general applications to be accelerated in GPU-based plat-

forms. This trend is called General Purpose Computing on GPU (GPGPU) [19], or

what is the same, the usage of GPUs for applications for which they were not originally

designed. These general applications must have parallel characteristics and an intense

computational load to obtain a good performance.

To assist in the programming tasks of these devices, the GPU manufacturers, like

NVIDIA or ATI, have proposed new languages or even extensions for the most common

used high level programming languages. As example, NVIDIA proposes CUDA [20],

which is a software platform for massively parallel high-performance computing on the

company powerful GPUs.

In CUDA, the calculations are distributed in a mesh or grid of thread blocks,

each are with the same size (number of threads). These threads run the GPU code,

known as kernel. The dimensions of the mesh and thread blocks should be carefully

chosen for maximum performance based on the specific problem being treated.

Current GPUs are being used for solving different problems like data mining,

robotics, visual inspection, video conferencing, video-on-demand, image databases,

data visualization, medical imaging, . . . and it is increasingly the number of appli-

cations that are being parallelized for GPUs.

2.1 NVIDIA’s CUDA Programming Model

The NVIDIA’s CUDA Programming Model ([20]) considers the GPU as a computa-

tional device capable to execute a high number of parallel threads. CUDA includes

C/C++ software development tools, function libraries, and a hardware abstraction
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mechanism that hides the GPU hardware to the developers by means of an Applica-

tion Programming Interface (API). Among the main tasks to be done in CUDA are

the following: allocate data on the GPU, transfer data between the GPU and the CPU

and launch kernels.

A CUDA kernel executes a sequential code in a large number of threads in parallel.

The threads are arranged in a grid of blocks CUDA. The threads within a block can

work together efficiently exchanging data via a local shared memory and synchronize

low-latency execution through synchronization barriers (where threads in a block are

suspended until they all reach the synchronization point). By contrast, the threads of

different blocks in the same grid can only coordinate their implementation through a

high-latency accesses to global memory (the graphic board memory). Within limits,

the programmer specifies how many blocks and the number of threads per block that

are allocated to the implementation of a given kernel.

2.2 GPUs and Metric Spaces

As far as we know, the solutions considered till now developed on GPUs are based

on kNN queries without using data structures. This means that GPUs are basically

applied to exploit its parallelism only for exhaustive search (brute force) [21, 22, 23].

In [21] both elements (A) and queries (B) matrices are divided on fixed size

submatrices. In this way, the resultant submatrix C is computed by a block of threads.

Once the whole submatrix has been processed, CUDA-based Radix Sort [24] is applied

over the complete matrix in order to sort it and obtain the first k elements as a final

result.

In [22] a brute force algorithm is implemented where each thread computes the

distance between an element of a database and a query. Afterwards, it is necessary to
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sort the resultant array by means of a variant of the insertion sort algorithm.

As a conclusion, in these works the parallelization is applied in two stages. The

first one consists in building the distance matrix, and the second one consists in sorting

this distance matrix in order to obtain the final result.

A particular variant of the above proposed algorithms is presented in [25] where

the search is structured into three steps. In the first step each block solves a query.

Each thread keeps a heap where stores the kNN nearest elements proccessed by this

thread. Secondly, a reduction operation is applied to obtain a final heap. Finally, the

first k elements of this final heap are taken as a result of the query.

3 Spaghettis Data Structure

Spaghettis [17] is a variant of data structure LAESA [26] based on pivots. The method

tries to reduce the CPU time needed to carry out a query by using a data structure

where the distance to the pivots is sorted independently. As a result there is an array

associated to each pivot allowing a binary search in a given range.

For each pivot set Si = {x : |d(x, pi)− d(q, pi)| ≤ r}, i = 1, ..., k is obtained, and

a list of candidates will be formed by intersection of the whole sets.

3.1 Construction

During the construction of the spaghettis structure, a random set of pivots p1, ..., pk is

selected. These pivots could belong or not to the database to be indexed. The algorithm

1 shows in detail the construction process. Each position on table Si represents an

object of the database which has a link to its position on the next table. The last table
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Algorithm 1 Spaghettis : Construction Algorithm.

1: {Let X, the metric space}
2: {Let Y ⊆ X, the database}
3: {P is the set of pivots p1, . . . , pk ∈ X}
4: {Let Si the table of distances associated pi}
5: {Spaghettis is ∪Si}
6: for all pi ∈ P do

7: Si ← dist(pi, Y)
8: end for

9: for all Si do

10: Order(Si)
11: end for

12: Each element within Si stores its position in the next table (Si+1)

links the object to its position on the database. Figure 1 shows an example considering

17 elements.

3.2 Searching

During the searching process, given a query q and a range r, a range search on an

spaghettis follows the following steps:

1. The distance between q and all pivots p1, . . . , pk is calculated in order to obtain

k intervals in the form [a1, b1], ..., [ak, bk], where ai = d(pi, q) - r and bi = d(pi, q)

+ r.

2. The objects in the intersection of all intervals are considered as candidates to the

query q.

3. For each candidate object y, the distance d(q, y) is calculated and if d(q, y) ≤ r,

then the object y is a solution to the query.

Implementation details are shown in algorithm 2.
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Algorithm 2 Spaghettis : Search Algorithm.

rangesearch(query q, range r)

1: {Let Y ⊆ X, the database}
2: {P set of pivots p1, . . . , pk ∈ X}
3: {Let D the table of distances associated q}
4: {Let S Spaghettis}
5: for all pi ∈ P do

6: Di ← dist(q, pi)
7: end for

8: for all yi ∈ Y do

9: discarded← false

10: for all pj ∈ P do

11: if Dj − r > Sij ||Dj + r < Sij then

12: discarded← true

13: break;
14: end if

15: end for

16: if !discarded then

17: if dist(yi, q) ≤ r then

18: add to result
19: end if

20: end if

21: end for
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Figure 1: Spaghettis : Construction and search. Example for query q with ranges
{(6, 10), (5, 9), (2, 6), (4, 8)} to pivots.

In this algorithm, Sij represents the distance between the object yi to the pivot

pj.

Figure 1 represents the data structure spaghettis in its original form. This struc-

ture is built using 4 pivots to index a database of 17 objects. The searching process is

as follows. Assuming a query q, the distance to the pivots {8, 7, 4, 6}, and a searching

range r = 2, Figure 1 shows in dark gray the intervals {(6, 10), (5, 9), (2, 6), (4, 8)} over

which the searching is going to be carried out. Also, in this figure it is possible to

see all the objects that belong to the intersection of all the intervals and then they

are considered as candidates. Finally, the distance has to be calculated in order to

determine a solution from the candidates. The solution is given if the distance is lower

than a searching range.
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4 GPU-based implementation

The main goal of this paper is to develop a GPU-based implementation of the range

query algorithms.

This type of process intrinsically has a high data-level parallelism with a high

computing requirements. For that reason, GPU computing is very useful in order to

accelerate this process due to the fact that GPUs exploit in an efficient way data-level

parallelism. Moreover, these devices provide the best cost-per-performance parallel

architecture for implementing such algorithms.

This section is divided in two different parts. First, we show the exhaustive

search GPU-based implementation and next, we present the spaghettis GPU-based

implementation.

4.1 Exhaustive Search GPU-based Implementation

This implementation is an iterative process where in each iteration one kernel is exe-

cuted, which calculates the distances between one particular query and every elements

of the database. It is not possible to calculate all distances for every queries in only

one kernel due to the GPU limitations (number of threads and memory capacity). In

this kernel as many threads as number of elements in the database are launched. Each

thread, calculates the distance between one data of dataset and one particular query,

and next, determines if this data is or not a valid solution.

4.2 Spaghettis GPU-based Implementation

In this section, first of all, we explain the changes on Spaghettis structure in order

to obtain better performance. Next, we continue describing the different parts imple-
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mented the GPU-based platform. Then, we explain the implementation of these parts

and, finally, we show the pseudocode of each implementation.

In order to obtain better performance on GPU, we have made the following

changes on the Spaghettis structure. We adapt the structure for that it’s very similar

to an array, which is more efficient in GPU computing. In this implementation, each

row represents to an object of dataset and each column to a pivot. Therefore, each cell

contains the distance between the object and the pivot. Moreover, unlike the original

version, the array is sorted by the first pivot. Thus, the cells of the same row belong

to the same object. For that reason, when one thread accesses to the elements of one

row, these are stored in contiguous memory locations allowing more efficient memory

accesses.

The parallelization of the searching algorithm has been split into three parts,

which are the most computationally expensive parts of this algorithm. These parts

correspond to the three steps presented in Subsection 3.2.

The first part consists in computing the distances between the set of queries, Q,

and the set of pivots, P . In order to obtain the advantages of using a GPU platform

is necessary a data structure which stores every distances. Therefore, this structure is

implemented as a Q×P matrix which allows us to compute every distances at the same

time in a single call to kernel. This part is implemented in one kernel with as many

threads as number of queries. In fact, each thread solves independently the distance

from a query to all pivots. The algorithm 3 shows a general pseudocode of this kernel.

Algorithm 3 Distance generator kernel

global KDistances(queries Q, pivots P , distances D)

1: {Let D be the table of distances associated to q}
2: {Let i thread Id }
3: for all pj ∈ P do

4: Dij ← dist(qi, pj)
5: end for
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The second part of the parallel implementation consists in determining if each

element of the database is or not a candidate for every queries. This part has been

implemented as an iterative process. Each iteration the candidates for a particular

query are computed in one kernel. As we have described above, it is not possible to

calculate all candidates for every queries in only one kernel due to the GPU limitations.

In this kernel as many number of threads as number of elements of the database are

launched. Each thread of this kernel determines, for a given data (yi) of the dataset,

whether if this data is candidate or not. Thus, this kernel returns a list of candidates

for a given query. Finally, when this process finishes we obtain one list of candidates

for each query. This task is carried out by a kernel called KCandidates (see algorithm

4).

Algorithm 4 CUDA Search Algorithm.

global KCandidates(range r, Spaghettis S, distances D, pivots P , candidates
C)

1: {P set of pivots p1, . . . , p2 ∈ X}
2: {Let D the table of distances associated q}
3: {Let C list of candidates for q}
4: {Let i thread Id }
5: discarded← false

6: for all pj ∈ P do

7: if Dj − r > Sij ||Dj + r < Sij then

8: discarded← true

9: break;
10: end if

11: end for

12: if !discarded then

13: add to C (candidates)
14: end if

The kernel KSolution (see algorithm 5) implemented in the third part computes

if each candidate is really a solution. In this kernel, the number of threads correponds

to the number of candidates for each query. Each thread calculates the distance be-

tween one candidate and one query, and determines if this candidate is or not solution.

Finally, as result we obtain one list of solutions for each query.
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Algorithm 5 CUDA final solutions for query q.

global KSolution(range r, database Y, candidates C, query q, solutions
R)

1: {Let Y ⊆ X, the database}
2: {Let C list of candidates for q}
3: {Let R list of solutions for q}
4: {Let i thread Id }
5: if dist(ci, q) ≤ r then

6: add to R (solutions)
7: end if

A general scheme of the searching process main program is shown in algorithm

6.

Algorithm 6 CUDA Main program.
Main Program

1: KDistances<<<NUM QUERIES/MAX THREAD, MAX THREAD>>>(Q,P ,D)
2: for all qi ∈ Q do

3: KCandidates<<<MAX DATA/MAX THREAD, MAX THREAD>>>

(r,S,D,P ,Ci)
4: KSolutions<<<MAX CANDIDATES/MAX THREAD,

MAX THREAD>>>(r,Y,Ci,qi,R)
5: show R

6: end for

5 Experimental Evaluation

This section presents the experimental results obtained for the previous algorithms

considering the Spanish dictionary as database. For this case study the generated

spaghettis data structure is completely stored on the global memory of the GPU.

5.1 Experimental Environment

Tests made in one metric space from the Metric Spaces Library1 were selected for

this paper. This is a Spanish dictionary with 86,061 words, where the edit distance

1www.sisap.org.

18



is used. This distance is defined as the minimum number of insertions, deletions or

substitutions of characters needed to make one of the words equal to the other. We

create the structure with the 90% of the dataset, and reserve the rest for queries. We

have chosen this experimental environment because is the usual environment used to

evaluate this type of algorithms.

Hardware platform used was a PC with the following main components:

• CPU: Intel Core 2 Quad at 2.66GHz and 4GB of main memory.

• GPU: GTX 285 with 240 cores and a main memory of 1 GB.

5.2 Experimental Results

The results presented in this section belong to a set of experiments with the following

features:

• The selection of pivots was made randomly.

• The spaghettis structure was built considering 4, 8, 16, and 32 pivots.

• For each experiment, 8,606 queries were given over an spaghettis with 77,455

objects.

• For each query, a range search between 1 and 4 was considered.

• The execution time shown in this paper is the total time of all processes for both

versions, parallel and sequential. Therefore, in the case of parallel version, in

the execution time is included the data transfer time between the main memory

(CPU) and global device memory (GPU).
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Figure 2: Comparative results of search costs for the space of words for Spaghettis

metric structure (Spanish Dictionary). Number of pivots 4, 8, 16 and 32, and range

search from 1 to 4.

Figure 2(a) shows the execution time spent by the sequential and GPU imple-

mentation for Spaghetttis structure. Notice that the parallel version based on CUDA

reduces dramatically the execution time, increasing the performance. Figure 2(b) shows

in detail the time spent by the CUDA implementation. As reference, the execution

time spent by the sequential and GPU implementation for the exhaustive search (Seq.

and GPU Brute Force) is included in both figures (2(a) and 2(b)).

According to experimental results, it is interesting to discuss the following topics:

• As can be observed, the use of Spaghettis structure allows us to decrease the

number of distance evaluations, due to that to compute the distance between all

database objects is avoided. In Figure 2 we can deduce that:

– When the number of pivots increases the performance of search algorithm

is much better in sequential and GPU versions.

– The use of GPU decreases considerably the execution time in both versions,

exhaustive search and Spaghettis structure.

• As can be observed in Figure 3 (range 1 and 2), the speed-up is smaller when
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Figure 3: Speed-up graphics to the space of words for Spaghettis metric structure

(Spanish Dictionary).

the number of pivots is higher. Due to this fact, more number of pivots more

workload for the threads. Moreover, when the range is higher (range 3 and 4)

the speed-up increases, because the behaviour approaches to exhaustive search.

• There is an asymptotic speed-up around 9.5 (see Figure 3). It is possible to

observe that this behaviour is shown when the range search is 4. But, in order

to ensure this assertion, a proof considering a range search equal to 8 has been

carried out.

5.3 Energy Consumption

As shown in previous section, important execution time reduction can be obtained

by means of the use of a GPU-based computing platform. However, modern GPUs

are composed by a lot of computation cores, and so they suffer from higher power

consumption requirements. Therefore, it is necessary to develop energy-efficient GPU

codes and as a consequence power consumption becomes an essential metric in these

kinds of studies.

In this work, power measurements have been performed by the system shown in

Figure 4. This device, developed by the RAAP group at the Albacete Research Institute
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Figure 4: Energy Consumption: diagram of energy measurement device.

of Informatics (I3A)2, is capable of transmitting consumed current data in a reliable

and easy way to a computer. The principle of this device is based on the analysis of the

magnetic field produced by an electric current flowing through a straight conductor. We

use a sensor capable of translating these magnetic changes into a proportional voltage

level to work in a comfortable way. The sensor used is the Allegro Microsystems Inc

A1301.

The sensor response is given by equation v = y0 +α× I, where v is the voltage at

the output of the sensor, y0 = 2.4610, α = 0.4185 and I is the current flowing through

the conductor which current we want to measure. The constants y0 and α have been

obtained by a linear regression of the experimental points in the previous graph.

The sensor output is tied to the analog port in a microcontroller. This microcon-

troller is the responsible of sampling the voltage data and sending it to the user. The

microcontroller used is the Microchip PIC12F683 which operates at 8 MHz. The data

transfer rate of our device is 115,200 bauds using RS232 protocol.

For the serial communication has been used the Future Technology Devices In-

ternational Ltd FT232 chip which allow us to change the RS232 environment to the

USB environment. The data is received through a virtual COM port which is created

when the installation of the sensor node in the host computer is completed. The soft-

2URL of the Albacete Research Institute of Informatics http://www.i3a.uclm.es
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ware used to collect the data is the Eltima software RS232 datalogger. Note that two

computers have been used (Figure 4). The first one is the computer in which the range

search are running and which energy wants to be measured. The second one is used in

order to receive and process the energy data.

Figure 5 shows in detail the energy consumption for the sequential implementa-

tion running on CPU and the parallel implementation running in GPU. In this case,

the information related to energy consumption has been obtained by considering a

search of 8,606 objects over a structure with 16 pivots and range search r = 2. The

other experiments have similar behaviour.

At first sight, it is possible to see that the energy consumption of GPU is higher

than the CPU. However, due to the fact that the execution time of the GPU is lower

than the CPU, the global energy consumption is lowest.

The average electrical power of the sequential implementation has been 130.38w

during 589.60 seconds providing a result of 76, 872.048 Joules. However, the parallel

implementation has an average electrical power of 212.68w during 71.76 seconds pro-

viding a result of 15, 261.9168 Joules. That means, that the energy consumption saved

by the parallel version is 80.14% over the sequential one.
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6 Conclusions and Future Work

In this work, a parallel approach based on GPU has been carried out in order to reduce

the execution time spent on the searching process of a query in a dataset.

This implementation has provided good results in terms of speed-up when con-

sidering suitable values for the input parameters as number of pivots and range search.

In this case, a speed-up of 9.5 has been obtained.

Another important result is the save of energy consumption. If the sequential

and the parallel implementation are compared, the parallel implementation consumes

80.14% less than the sequential one.

To be able to continue with the study of this work in order to obtain more efficient

implementations, and as future work, we have planned the following topics:

• To test the GPU-based implementation presented in this paper considering a

different database.

• Moreover, we would like analyse the impact that different distance functions

have on the global performance of this kind of algorithms, and on the accelera-

tion obtained with parallel platforms. There are distance functions with a great

computational load, like that presented in this paper, and others with minimum

computational requirements. In these cases, hiding the overhead due to data

transferences will be a challenge.

• To compare with other parallel platforms in terms of performance, energy con-

sumption and economic cost. As a consequence, it is necessary to implement the

work carried out here using MPI or OpenMP (or both) according to the target

platform.
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