
Towards a more efficient use of GPUs

Pedro Valero1 and Fernando L. Pelayo2

1 University of Castilla-La Mancha, Albacete Research Institute of Informatics,
Pedro.ValeroLara@uclm.es

2 University of Castilla-La Mancha, Computing Systems Department,
FernandoL.Pelayo@uclm.es, Avda. España s/n, 02071-Albacete (Spain).

Abstract. This paper presents a new proposal of use for GPUs in which
more than one job can be executed simultaneously in a single GPU. The
requirements for this are provided and a performance evaluation for such
a new scenario is also presented.
Finally the results of these performance measurements are analyzed and
the paper is concluded with some key guidelines for getting the most of
these devices under the performance point of view.

Introduction

Current GPUs are an appropriate parallel platform in order to accelerate any
application, due to that, these devices have the highest ratio performance/cost
with a high number of fragment processors (e.g. 240-512) and high memory
bandwidth.

GPUs can execute millions of threads at the same time however, they only
can execute one job or application at the same time. For example, if one job
would need 512 threads, and some GPU can execute 35,000,000 threads, the job
will only use a 0.001% of the total capacity of the GPU, being a use of GPU
very inefficient. For that reason, we have modified the traditional method of
using GPUs in order to be able to execute more than one job at the same time.
We have compared the traditional method and this new proposal, mainly from
performance the point of view.

Nowadays, GPUs are the devices, with the best performance/cost ratio.
In fact, current GPUs are being used in the most of the youngest HPC en-
vironments, e.g., there are three supercomputing systems in the top four of
top 500[17] list which use GPUs , in the first, third and fourth places. More-
over, GPUs are also being introduced in both GRID[7] and CLOUD[6] envi-
ronments in a massive way. In these environments the GPUs are used in a
large different fields, like science, economy, medicine, astronomy, engineering,
etc. [6,7,8,9,10,11,12,13,14,15,16].

The paper is structured as follows: Section 1 describes the main characteristic
of the current GPUs. Section 2 presents a new proposal for a use more efficient
of GPUs, moreover, section 3 shows experimental results and performance anal-
ysis over the proposed programming philosophy. Finally, Section 4 outlines the
conclusions and future work.



2

1 GPU

GPUs are traditionally used for interactive applications, and are designed to
achieve high rasterization performance however, their characteristics have al-
lowed the opportunity to other more general applications to be accelerated in
GPU-based platforms. This trend is now called General Purpose Computing on
GPU (GPGPU) [1], or what is the same, the usage of GPUs for applications
for which they were not originally designed. These general applications must
have parallel characteristics and an intense computational load to obtain a good
performance.

As mentioned, the main feature of these devices is a large number of pro-
cessing elements integrated into a single chip at the expense of a significant
reduction in cache memory. These processing elements are arranged on memory
cards that have a local high-speed external DRAM and are connected to the
computer through a high-speed I/O interface (PCI Express).

The era of single-threaded processor performance increasing has come to
an end. Programs will only increase in performance if they utilize parallelism.
However, there are different kinds of parallelism. For instance, multicore CPUs
provide task-level parallelism, on other hand, Graphics Processing Units (GPUs)
provide data-level parallelism.

1.1 GPU Architecture

Current GPUs consist of a high number (e.g. 8-480) of fragment processors with
high memory bandwidth. They can offer 10x higher main memory bandwidth
and they can use data parallelism to achieve up to 10x more floating point
throughput than CPUs [2].

A GPU architecture consist of a number of multiprocessors (e.g. 1-30), each
of then having a number cores between 8 and 32. All multiprocessors share the
same memory, this memory is called “global memory”. On other hand, all cores
of one multiprocessor can access to the same memory, this memory is called
“shared memory”. This memory only is useful when many threads of the same
multiprocessor have to access to the same data many times; this is because, in
order to load a piece of information in shared memory it is necessary to access
to global memory. The classical GPU architecture is shown in figure 1.

1.2 CUDA

In previous years, there were many attempts to use graphics-oriented languages,
see [3,4], in order to accelerate specific parts of code using GPUs. More recently,
the GPU manufacturers, like NVIDIA or ATI, have proposed new languages or
even extensions for the most common used high level programming languages. As
example, NVIDIA proposes CUDA [5], which is a software platform for massively
parallel high-performance computing on NVIDIA’s powerful GPUs.

In CUDA, the calculations are distributed in a mesh or grid of thread blocks,
all thread blocks have the same size (number of threads). These threads run



3

Fig. 1. GPU Architecture.

the GPU code, known as kernel; we’d like notice that although this kernel is
originally called by the CPU, finally it is executed in the GPU, as seen in figure
2. The dimensions of both the mesh and the threads blocks, should be carefully
chosen in order to achieve the maximum performance depending on the specific
problem being treated.

The NVIDIA’s CUDA Programming Model considers the GPU as a com-
putational device able to execute a high number of parallel threads. CUDA
includes C/C++ software development tools, function libraries, and a hardware
abstraction mechanism that hides the GPU hardware from developers such as
an Application Programming Interface (API). Among the main tasks to be done
in CUDA, they can be founded, allocating data on the GPU, transferring data
between the GPU and the CPU and vice versa, and launching kernels.

A CUDA kernel executes a sequential code in a large number of threads in
parallel. The threads are arranged in a grid of blocks CUDA (figure 2). The
threads within a block can work together efficiently exchanging data via a local
shared memory and synchronize low-latency execution through synchronization
barriers (where threads in a block are suspended until they all reach the synchro-
nization point). By contrast, the threads of different blocks in the same network
can only coordinate their implementation through a high-latency accesses to
global memory (the memory graphic board). Each block is executed in a differ-



4

ent multiprocessor. Within limits, the programmer specifies the number of blocks
and the number of threads per block to be allocated, in the implementation of
a given kernel.

Fig. 2. Grid of CUDA blocks.

All CUDA code is divided in two different parts. The first is the CPU code,
this code provides the instructions to be performed by the CPU, e.g. allocating
data on the CPU and GPU, transferring data between the GPU and CPU (and
vice versa) and launching kernels. Moreover, the GPU code (kernel) provides the
instructions to be executed in the GPU, by all threads of the kernel.

All CPU codes have the same steps, so ordered:

1. Allocating data on CPU
2. Allocating data on GPU
3. Transferring data form CPU to GPU
4. Launching kernels
5. Transferring data between from GPU to CPU

2 A new proposal for a more efficient use of GPUs

The new proposal consists in executing more than one job at the same time.
From the characteristics of the current GPUs and new software tools like CUDA,
allows this proposal to be implemented, because each multiprocessor has its own
instructions control unit, show all CUDA codes have the same steps and each
threads block is executed in a single multiprocessor. These characteristics allow
us to execute so many jobs as blocks can be executed by the GPU.



5

Algorithm 1 CUDA pseudocode example 1.

Function CPUJob1 ⊲ CPU Code
1: CPUAllocate(A-CPU) ⊲ Allocate data on CPU
2: CPUAllocate(B-CPU)
3: GPUAllocate(A-GPU) ⊲ Allocate data on GPU
4: GPUAllocate(B-GPU)
5: CPU-GPUTransfer(A-CPU,A-GPU) ⊲ Tranfer data from CPU to GPU

(Parameters)
6: KernelJob1(A-GPU,B-GPU) ⊲ Launch kernel
7: GPU-CPUTransfer(B-GPU,B-CPU) ⊲ Transfer data from GPU and CPU

(Results)
Function kernelJob1(A,B) ⊲ GPU Code

8: i = index of thread
9: B[i] = A[i] + 100

Executing more than one job at the same time force to join all kernels codes,
thus each kernel code will be indexed in one or a set of blocks. Therefore, each
job is executed independently and simultaneously with others.

Several conditions are necessary to execute more than one job at the same
time:

– Each job must have its own steps (1-3) and 5 (subsection 1.2).
– A single kernel must contain all kernel of the jobs indexed by blocks.
– The jobs must be independent, so that, each job must have its own param-

eters and results.

In order to indicate the changes made to execute more than one job at the
same time, we show two different examples (algorithms 1 and 2) which describe
the traditional way of using a GPU. Finally, algorithm 3 is formed of the union of
algorithms 1 and 2 for the sake of executing the two kernels of these algorithms
at the same time. The three algorithms show the two parts of the code, the part
executed by CPU (CPUJob), and that executed by GPU (KernelJob).

3 Performance evaluation

Once described in previous section our proposed for improving the performances
of GPUs, it is time to run out these proposals and to analyze the real, or not,
advantages of them.

In this section, we develop the performance evaluation. We have used two
different GPU-based platforms (9600 GT and GTX 285), with different char-
acteristics (table 1), in order to obtain the factor or factors to guess the main
reasons or causes of the results achieved. We would like to emphasize that we
haven’t used shared memory because, as we explained in the section 1, the use
of shared memory is efficient just in certain cases, as those in which more than
one thread of the same threads block have to access to the same positions of



6

Algorithm 2 CUDA pseudocode example 2.

Function CPUJob2 ⊲ CPU Code
1: CPUAllocate(C-CPU) ⊲ Allocate data on CPU
2: CPUAllocate(D-CPU)
3: GPUAllocate(C-GPU) ⊲ Allocate data on GPU
4: GPUAllocate(D-GPU)
5: CPU-GPUTransfer(C-CPU,C-GPU) ⊲ Tranfer data from CPU to GPU

(Parametres)
6: CPU-GPUTransfer(D-CPU,D-GPU)
7: KernelJob2(C-GPU,D-GPU) ⊲ Launch kernel
8: GPU-CPUTransfer(D-GPU,D-CPU) ⊲ Tranfer data from GPU to CPU (Results)

Function kernelJob2(C,D) ⊲ GPU Code
9: i = index of thread

10: D[i] = C[i] × D[i]

Table 1. Characteristics of GPUs 9600M GT and GTX 285.

Characteristic 9600M GT GTX 285

Number of multiprocessors 4 30
Number of cores 32 240
Core clock 625 Mhz 648 Mhz
Memory clock 800 Mhz 1242 Mhz
Memory capacity 512 MB 1 GB
Memory Bus Size 128 bits 512 bits
Memory Bandwidth 25.6 GB/s 159 GB/s
Gigaflops 120 1062.72

memory many times. This is not our case since, there aren’t any data which are
shared by more than one thread.

We have proposed a set of test scenarios to evaluate the performance of both
platforms. Each scenario is formed of a set of jobs. In scenarios 1-4 the jobs are
identical, as a consequence of being interested in evaluating the GPU perfor-
mance with the same requirements. Nevertheless, in the last scenario (Scenario
5) the jobs are different in order to evaluate the GPU performance with different
requirements. The number of threads of each job is 512, due to that this number
is an upper limit of the number of threads per block in each platform.

In all the scenarios, we show one table with the execution time of the following
two alternatives; the first alternative consists in executing the different jobs
sequentially, while the second one consists in executing the different jobs at the
same time. We define factor 1 for indicating the number of jobs related with the
number of multiprocessors. For example, the 9600 GT has 4 multiprocessors, so
a factor equal to 0.5 indicates 2 jobs.

Factor =
#jobs

#multiprocessors
(1)



7

Algorithm 3 modified CUDA pseudocode example.

Function CPUJobUnited ⊲ CPU Code
1: CPUAllocate(A-CPU) ⊲ Allocate data on CPU Job1
2: CPUAllocate(B-CPU)
3: CPUAllocate(C-CPU) ⊲ Allocate data on CPU Job2
4: CPUAllocate(D-CPU)
5: GPUAllocate(A-GPU) ⊲ Allocate data on GPU Job1
6: GPUAllocate(B-GPU)
7: GPUAllocate(C-GPU) ⊲ Allocate data on GPU Job2
8: GPUAllocate(D-GPU)
9: CPU-GPUTransfer(A-CPU,A-GPU) ⊲ Tranfer data from CPU to GPU

(Parametres) Job1
10: CPU-GPUTransfer(C-CPU,C-GPU) ⊲ Tranfer data from CPU to GPU

(Parametres) Job2
11: CPU-GPUTransfer(D-CPU,D-GPU)
12: KernelUnited(A-GPU,B-GPUC-GPU,D-GPU) ⊲ Launch kernel
13: GPU-CPUTransfer(B-GPU,B-CPU) ⊲ Tranfer data from GPU to CPU (Results)

Job1
14: GPU-CPUTransfer(D-GPU,D-CPU) ⊲ Tranfer data from GPU and CPU

(Results) Job2
Function kernelJobUnited(A,B,C,D) ⊲ GPU Code

15: i = index of thread
16: j = index of block
17: if j = 0 then ⊲ kernelJob1
18: B[i] = A[i] + 100
19: else if j = 1 then ⊲ kernelJob2
20: D[i] = C[i] × D[i]
21: end if

In each scenario we show the pseudocode of the jobs, and one table which
shows the execution time of the two alternatives, first alternative (F.A.) and
second alternative (S.A.), the speed up (S.) and the total number of memory
accesses (M.A.) according to the factor for both platforms. The speed up is
the quotient between the time of execution of the first and second alternatives.
Therefore, the speed up refers to how much the second alternative is faster than
the first alternative. Thus, S = 3 means that time has been divided by 3.

S =
first alternative time

second alternative time
(2)

Table 2 shows the execution time (ms) and number of memory accesses of
one job for every scenario.



8

Table 2. Execution time of one job for each scenario.

Scenario 9600M GT(ms) GTX 285(ms) M.A.

1 0.042 0.059 0
2 0.047 0.062 1,536
3 1.27 0.33 132,096
4 2.95 0.61 263,168

3.1 Scenario 1

The only proposed under this scenario is to evaluate the handling of threads
blocks. For this reason, in this scenario there are not any memory accesses (Al-
gorithm 4). As we can see in table 3, the speed up obtained is almost ideal (speed
up equal to the number of jobs). Therefore, it is possible to execute a set of jobs
at the same time in one GPU.

In order to evaluate memory management, different numbers of memory ac-
cesses are performed in the rest of scenarios.

Algorithm 4 Scenario1.

Job Scenario1

1: int r1,r2,r3
2: r3 = r1 + r2

Table 3. Execution time for the scenario 1.

9600M GT GTX 285
Factor F.A. S.A. S. M.A. F.A. S.A. S. M.A.

0.5 0.084 0.044 1.9 0 0.885 0.062 14.27 0
1 0.168 0.046 3.65 0 1.77 0.064 27.65 0
1.5 0.252 0.047 5.36 0 2.65 0.065 40.76 0
2 0.336 0.048 7 0 3.54 0.066 53.63 0

3.2 Scenario 2

In this scenario there are 3 memory accesses for each thread and therefore 3 ×
512 = 1, 536 memory accesses for each job. The speed up obtained (Table 4)
is smaller than in scenario 1 due to the time required for memory accesses. As
expected, the speed up decreases when the factor increases, this is because the
number of memory accesses increases too.



9

Algorithm 5 Scenario2.

Job Scenario2(A, B, C)
Inputs:

A, B

Output:

C

1: i = index of thread
2: C[i] = A[i] + B[i]

Table 4. Execution time for the scenario 2.

9600M GT GTX 285
Factor F.A. S.A. S. M.A. F.A. S.A. S. M.A.

0.5 0.094 0.051 1,84 3,072 0.93 0.067 13.88 23,040
1 0.188 0.054 3.48 6,144 1.86 0.070 26.57 46,080
1.5 0.282 0.055 5.12 9,216 2.79 0.076 36.71 69,120
2 0.376 0.056 6.71 12,288 3.72 0.079 47.08 92,160

3.3 Scenario 3

In this scenario, each thread has 256 + 2 memory accesses thus each job has
258× 512 = 132, 096 memory accesses, which is 130, 560 memory accesses more
than scenario 2 for each job. When memory accesses are substantially increased
the speed up falls down even more than before.

Algorithm 6 Scenario3.

Job Scenario3(A, B, C)
Inputs:

A, B

Output:

C

1: i = index of thread
2: int r1
3: r1 = A[i]
4: for j = 0 to 255 do

5: r1 += B[j]
6: end for

7: C[i] = r1



10

Table 5. Execution time for the scenario 3.

9600M GT GTX 285
Factor F.A. S.A. S. M.A. F.A. S.A. S. M.A.

0.5 2.54 2.25 1.12 264,192 4.95 1.51 3.27 1,981,440
1 5.08 4.47 1.13 528,384 9.9 4.92 2.01 3,962,880
1.5 7.62 6.58 1.15 792,576 14.85 4.96 2.99 5,944,320
2 10.16 8.80 1.15 1,056,768 19.8 9.98 1.98 7,925,760

3.4 Scenario 4

There are 512+2 memory accesses for each thread in this scenario, and therefore
each job has 512 × 514 = 263, 168 memory accesses, which is 261, 632 memory
accesses more than scenario 1 and 129, 536 more than scenario 2 for each job.
Thus, the speed up of this scenario (Table 6) is the smallest due to the fact that
the number of memory accesses is the greatest, even more, in some executions
the time taken by both alternatives have been almost equal.

Algorithm 7 Scenario4.

Job Scenario4(A, B, C)
Inputs:

A, B

Output:

C

1: i = index of thread
2: int r1
3: r1 = A[i]
4: for j = 0 to 511 do

5: r1 += B[j]
6: end for

7: C[i] = r1

Table 6. Execution time for the scenario 4.

9600M GT GTX 285
Factor F.A. S.A. S. M.A. F.A. S.A. S. M.A.

0.5 5.9 5.42 1.08 526,336 9.15 3.15 2.90 3,947,520
1 11.8 11.20 1.05 1,052,672 18.3 10.97 1.66 7,895,040
1.5 17.7 16.60 1.06 1,579,008 27.45 11.53 2.38 11,842,560
2 23.6 21.90 1.07 2,105,344 36.6 34.93 1.04 15,790,080



11

3.5 Scenario 5

In this scenario the jobs executed are different for the sake of evaluating GPU
performance with different requirements. Besides, there are 2 different test cases;
in the first test case, we execute jobs of the 4 scenarios, for each scenario, we
execute a different number of jobs for each platform (factor equals to 0.5), for
the 9600M GT, we executed 2 jobs for each scenario, on the other hand, for
the GTX 285, we executed 15 jobs for each scenario. In the second test case, we
execute jobs of scenarios 3 and 4, which are the more computationally expensive,
because this is the reason of having 2 different test cases (one specially focused
on heavy computations), for the 9600 M GT we execute 4 jobs for each scenario,
and for the GTX 285 we execute 30 jobs for each scenario.

Algorithm 8 shows the structure of the kernel for both cases and platforms.

Algorithm 8 Scenario5.

Case1 Scenario5(Set of Parameters)
1: j = index of block
2: if ((j < 2 (9600M GT)) OR (j < 15 (GTX 285))) then

3: kernelScenario1
4: else if ((j < 4 (9600M GT)) OR (j < 30 (GTX 285))) then

5: kernelScenario2
6: else if ((j < 6 (9600M GT)) OR (j < 45 (GTX 285))) then

7: kernelScenario3
8: else

9: kernelScenario4
10: end if

Case2 Scenario5(Set of Parameters)
11: j = index of block
12: if ((j < 4 (9600M GT)) OR (j < 30 (GTX 285))) then

13: kernelScenario3
14: else

15: kernelScenario4
16: end if

Again, from table 7, the more memory accesses, the smaller speed up.

Table 7. Execution time for the scenario 5.

9600M GT GTX 285
Case F.A. S.A. S. M.A. F.A. S.A. S. M.A.

1 8.61 2.85 3.02 793,600 15.915 5.95 2.67 5,952,000
2 16.88 5.85 2.88 1,581,056 28.2 21.47 1.31 11,857,920



12

4 Conclusions and future work

We have proven the capacity of executing more than one job at the same time
on a GPU as the results obtained in this study shows.

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 3 4

S
pe

ed
 u

p

Scenarios

9600 GT (1)
Ideal speed up (1)

GTX 285 (2)
Ideal speed up (2)

Fig. 3. Speed up obtained in all scenarios for a factor equal to 0.5.

When the number of memory accesses increases, the speed up falls down, this
is mainly due to two reasons, firstly, because the memory accesses are slow; the
memory conflicts are the second reason. One memory conflict occurs when two
or more threads have to access the same memory bank at the very same time
(simultaneously). In these cases the memory accesses are forced to be sequential.
Thus, as we show in section 3, the more memory accesses, the more memory
conflicts, so the speed up falls down, since, the global memory is shared by all
multiprocessors, and therefore all threads of every multiprocessor could access
to the same memory space. In the case of 9600 GT GPU, the speed up is smaller,
due to the fact that this GPU has not only smaller memory capacity but also
smaller bus size and smaller memory bandwidth than GTX 850 GPU. Figure 3
shows the tendency of speed up for all scenarios under a factor equal to 0.5 and
the ideal speed up for both platforms. On other hand, figure 4 shows the number
of memory accesses for all scenarios under the same factor. Both figures 3 and 4
show the behaviours of both platforms for each scenario.

It is obvious the increasing use of GPUs in a lot of HPC environments and
in this line is focused our future research interest in this topic.

In our modest opinion these GPUs devices should have as many “private”
memory spaces as number of multiprocessors, since the bottleneck of all these



13

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

1.5 2 3 4

N
um

be
r 

M
em

or
y 

A
cc

es
se

s

Scenarios

9600 GT
GTX 285

Fig. 4. Number of memory accesses of all scenarios for a factor equal to 0.5.

experiments seems to be there, for the sake of better being used under the re-
quirements demanded by these HPC environments. Unfortunately, the future
developments of GPU’s are focused mainly on increasing the number of cores
per multiprocessor and somehow, on improving the hierarchy of memory used.
In order to improve these devices even more, we think that having an scheduling
policy which allows to manage the executions of the different jobs (preventing
to be forced to execute all jobs at the same time), therefore these jobs could be
executed according their needs or priorities, perhaps defined by optimizing gen-
eral/particular performances, could be very profitable for these devices. Figure
5, roughly captures these two proposals.

Fig. 5. Changes on GPU Architecture



14

References

1. GPGPU. General-purpose computation using graphics hardware. http://www.

gpgpu.org.
2. W.-C. Feng, D. Manocha. High-performance computing using accelerators, Parallel

Computing, Elsevier, 33 (2007), 645-647.
3. R.J. Rost. OpenGL Shading Language, Addison-Wesley, 2005.
4. W.R. Mark, S.R. Glanville, K. Akeley, M.J. Kilgard. Cg: a system for programming

graphics hardware in a C-like language. SIGGRAPH’03: ACM SIGGRAPH 2003
Papers, pages 896-907, New York, NY, USA, 2003. ACM Press.

5. NVIDIA. NVIDIA CUDA Compute Unified Device Architecture-Programming

Guide, Version 2.3 2009, http://www.nvidia.com/object/cuda_home.html.
6. Speeding up pricing complex instruments in the cloud with scifinance. SciComp Inc.

http://www.scicomp.com/.
7. GPUGRID. http://www.gpugrid.net.
8. BOINC. http://boinc.berkeley.edu/gpu.php.
9. SETI. http://setiathome.berkeley.edu/cuda.php.
10. Milkyway. http://milkyway.cs.rpi.edu/milkyway_gpu/.
11. AQUA. http://aqua.dwavesys.com/.
12. The Lattice Project. http://boinc.umiacs.umd.edu/.
13. Einstein. http://einstein.phys.uwm.edu/.
14. Collatz. http://boinc.thesonntags.com/collatz/.
15. Primegrid. http://www.primegrid.com/.
16. DNETC. http://dnetc.net/.
17. TOP500. http://www.top500.org/.


