
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Specification and Verification of Normative
Specifications using C-O Diagrams

Enrique Martı́nez, M. Emilia Cambronero, Gregorio Dı́az and Gerardo Schneider

Abstract —C-O Diagrams have been introduced as a means to have a more visual representation of normative texts and
electronic contracts, where it is possible to represent the obligations, permissions and prohibitions of the different signatories, as
well as what are the penalties in case of not fulfilment of their obligations and prohibitions. In such diagrams we are also able to
represent absolute and relative timing constraints. In this paper we present a formal semantics for C-O Diagrams based on timed
automata extended with an ordering of states and edges in order to represent different deontic modalities. As a proof of concept
we apply our approach to two different case studies.

Index Terms —Normative documents, electronic contracts, deontic logic, formal verification, visual models, timed automata, C-O
Diagrams.

✦

1 INTRODUCTION

IN the software context, the term contract has tra-
ditionally been used as a metaphor to represent

limited kinds of “agreements” between software el-
ements at different levels of abstraction. The first use
of the term in connection with software programming
and design was done by Meyer in the context of the
language Eiffel (programming-by-contracts, or design-by-
contract) [1]. This notion of contracts basically relies
on the Hoare’s notion of pre and post-conditions
and invariants. Though this paradigm has proved to
be useful for developing object oriented systems, it
seems to have shortcomings for novel development
paradigms such as service-oriented computing and
component-based development. These new applica-
tions have a more involved interaction and therefore
require a more sophisticated notion of contracts.

As a response, behavioural interfaces have been
proposed to capture richer properties than simple pre
and post-conditions [2]. Here it is possible to express
contracts on the history of events, including causality
properties. However, the approach is limited when it
comes to contracts containing exceptional behaviour,
since the focus is mainly on the interaction concerning
expected (and prohibited) behaviour.

In the context of SOA, there are different ser-
vice contract specification languages, like ebXML [3],
WSLA [4], and WS-Agreement [5]. These standards
and specification languages suffer from one or more of

• Enrique Martı́nez, M. Emilia Cambronero and Gregorio Dı́az are
with the Department of Computer Science, University of Castilla-La
Mancha, Albacete, Spain.
E-mail: {emartinez, gregorio, emicp}@dsi.uclm.es

• Gerardo Schneider is with the Department of Computer Science and
Engineering, Chalmers | University of Gothenburg, Sweden.
E-mail: gersch@chalmers.se

the following problems: They are restricted to bilateral
contracts, lack formal semantics (so it is difficult to
reason about them), their treatment of functional be-
haviour is rather limited and the sub-languages used
to specify, for instance, security constraints are usually
limited to small application-specific domains. The lack
of suitable languages for contracts in the context of
SOA is a clear conclusion of the survey [6] where a
taxonomy is presented.

More recently, some researchers have investigated
how to adapt deontic logic [7] to define (consistent)
contracts targeted to software systems where the focus
is on the normative notions of obligation, permis-
sion and prohibition, including sometimes exceptional
cases (e.g., [8]). Independently of the application do-
main, there still is need to better fill the gap between
a contract understood by non-experts in formal meth-
ods (for its use), its logical representation (for rea-
soning), and its internal machine-representation (for
runtime monitoring, and to be manipulated by pro-
grammers). We see two possible ways to bridge this
gap: i) to develop suitable techniques to get a good
translation from contracts written in natural language
into formal languages, and ii) to provide a graphical
representation (and tools) to manipulate contracts at
a high level, with formal semantics supporting auto-
matic translation into the formal language. We take in
this paper the second approach.

In [9] we have introduced C-O Diagrams, a graphical
representation not only for electronic contracts but
also for the specification of any kind of normative text
(Web service composition behaviour, software product
lines engineering, requirements engineering, . . .). C-O
Diagrams allow the representation of complex clauses
describing the obligations, permissions, and prohibi-
tions of different signatories (as defined in deontic
logic [7]), as well as reparations describing contractual

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

name

agent

Fig. 1. Box structure

clauses in case of not fulfilment of obligations and
prohibitions. Besides, C-O Diagrams permit to define
real-time constraints. In [10] some of the satisfaction
rules needed to check if a timed automaton satisfies
a C-O Diagram specification were defined.

The goal of this paper is to further develop our
previous work, in particular we present here a formal
semantics for C-O Diagrams based on timed automata,
extended with an ordering of states and edges. As a
proof of concept, two case studies are presented, one
of them in the field of Web service composition and
another one in the field of requirements engineering.

The rest of the paper is structured as follows: Sec-
tion 2 presents C-O Diagrams and their syntax, Section
3 develops the formal semantics of C-O Diagrams,
and Section 4 explains the implementation of the
resulting timed automata in UPPAAL [11]. Section
5 presents a case study about an Online Auctioning
Process and Section 6 presents a case study about
the requirements engineering of an Adaptive Cruise
Control system. Finally, the related work is discussed
in Section 7 and the conclusions and future work are
commented in Section 8.

2 C-O DIAGRAMS DESCRIPTION AND SYN-
TAX

In Fig. 1 we show the basic element of C-O Diagrams.
It is called a box and it is divided into four fields. On
the left-hand side of the box we specify the conditions
and restrictions. The guard g specifies the conditions
under which the contract clause must be taken into
account (boolean expression). The time restriction tr
specifies the time frame during which the contract
clause must be satisfied (deadlines, timeouts, etc.).
The propositional content P, on the centre, is the main
field of the box, and it is used to specify normative
aspects (obligations, permissions and prohibitions)
that are applied over actions, and/or the specification
of the actions themselves. The last field of these boxes,
on the right-hand side, is the reparation R. This repara-
tion, if specified by the contract clause, is a reference
to another contract that must be satisfied in case the
main norm is not satisfied (a prohibition is violated or
an obligation is not fulfilled, there is no reparation for
permission), considering the clause eventually satisfied
if this reparation is satisfied. Each box has also a name
and an agent. The name is useful both to describe the
clause and to reference the box from other clauses,
so it must be unique. The agent indicates who is the
performer of the action.

Example 1: For example, if we consider a contract
about the operation of a coffee machine, some of the
following clauses have to be considered:

Clause Clause

SubClause1 SubClause1SubClause2 SubClause2

And-refinement Or-refinement

Fig. 2. AND/OR refinements in C-O Diagrams
Clause

SubClause1 SubClause2

Clause

SubClause1 SubClause2

Seq-refinement

Fig. 3. SEQ refinement and repetition in C-O Diagrams

• “The coffee machine is obliged to deliver coffee
after payment in less than one minute”, that is an
obligation including a deadline.

• “The client is permitted to choose the option coffee
with milk”, that is an example of permission.

• “The client is forbidden to pay with coins different
from Euros or Dollars”, that is an example of
prohibition.

• “The coffee machine is obliged to deliver milk if
coffee with milk has been chosen”, that is a obliga-
tion applied only if a condition is fulfilled.

• “The coffee machine is obliged to refund money
if coffee is not deliver”, that is a reparation to the
obligation of delivering coffee. 2

The basic element of C-O Diagrams can be refined by
using AND/OR/SEQ refinements. The aim of these
refinements is to capture the hierarchical clause struc-
ture followed by most contracts. An AND-refinement
(left-hand side of Fig. 2) means that all the subclauses
must be satisfied in order to satisfied the parent
clause. An OR-refinement (right-hand side of Fig. 2)
means that it is only necessary to satisfy one of
the subclauses in order to satisfy the parent clause,
so as soon as one of its subclauses is fulfilled, we
conclude that the parent clause is fulfilled as well.
A SEQ-refinement (left-hand side of Fig. 3) means
that the norm specified in the target box (SubClause2
in Fig. 3) must be fulfilled after satisfying the norm
specified in the source box (SubClause1 in Fig. 3). By
using these structures we can build a hierarchical tree
with the clauses defined by a contract, where the leaf
clauses correspond to the atomic clauses, that is, to
the clauses that cannot be divided into subclauses.
There is another structure that can be used to model
repetition. This structure is represented as an arrow
going from a subclause to one of its ancestor clauses
(or to itself), meaning the repetitive application of all
the subclauses of the target clause after satisfying the
source subclause. For instance, in the right-hand side
of Fig. 3, we have an OR-refinement with an arrow
going from SubClause1 to Clause. It means that after
satisfying SubClause1 we apply Clause again, but not
after satisfying SubClause2.

It is only considered the specification of atomic
actions in the P field of the leaf boxes of our diagrams.
The composition of actions can be achieved by means
of the different kinds of refinement. In this way, an
AND-refinement can be used to model concurrency

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3
-

aa bb a b

Seq-refinement

- -

a & ba + b a ; b

And-refinementOr-refinement

Fig. 4. Compound actions in C-O Diagrams
-

aa bb a b

And-refinement

- -

O O(a) (b)ÙO O(a) (b)+ O O(a) ; (b)

O OO O O O

Seq-refinementOr-refinement

Fig. 5. Composition of norms in C-O Diagrams

“&” between actions, an OR-refinement can be used
to model a choice “+” between actions, and a SEQ-
refinement can be used to model sequence “;” of ac-
tions. In Fig. 4 we can see an example about how to
model these compound actions through refinements,
given two atomic actions a and b.

The deontic norms (obligations, permissions and pro-
hibitions) that are applied over these actions can be
specified in any box of our C-O Diagrams, affecting all
the actions in the leaf boxes that are descendants of
this box. If it is the case that the box where we specify
the deontic norm is a leaf, the norm only affects the
atomic action we have in this box. It is used an upper
case “O” to denote an obligation, an upper case “P” to
denote a permission, and an upper case “F” to denote
a prohibition (forbidden). These letters are written in
the top left corner of field P.

The composition of deontic norms is also achieved
by means of the different refinements we have in C-
O Diagrams. Thus, an AND-refinement corresponds
to the conjunction operator “∧” between norms, an
OR-refinement corresponds to the choice operator “+”
between norms, and a SEQ-refinement corresponds to
the sequence operator “;” between norms.

Example 2: For example, we can imagine having
a leaf box specifying the obligation of performing
an action a, written as O(a), and another leaf box
specifying the obligation of performing an action b,
written as O(b). These two norms can be combined in
the three different ways above mentioned through the
different kinds of refinement (Fig. 5). Considering the
coffee machine example again, we can suppose that
action a corresponds to “delivers coffee” and action
b corresponds to “delivers milk”, so if we consider
the combination of both obligations with an AND-
refinement, it is specified that both obligations have
to be satisfied in any order. 2

There are some syntactic constraints to be taken into
account when defining C-O Diagrams. First, exactly
one deontic norm must be specified in each one of
the branches of our hierarchical tree, i.e., we cannot
have an action without a deontic norm applied over it
and we cannot have deontic norms applied over other
deontic norms. Also, agents must only be specified in
the boxes where a deontic norm is defined, being each
agent associated to a concrete deontic norm. Finally,
the repetition of both, actions and deontic norms, can
be achieved by means of the repetition structure we
have in C-O Diagrams.

Definition 1: (C-O Diagrams Syntax) We consider a
finite set of real-valued variables C standing for clocks,
a finite set of non-negative integer-valued variables
V , a finite alphabet Σ for atomic actions, a finite set
of identifiers A for agents, and another finite set of
identifiers N for names. The greek letter ǫ means
that an expression is empty. We use C to denote the
contract modelled by a C-O Diagram. The diagram is
defined by the following EBNF grammar:

C := (agent, name, g, tr, O(C2), R) |
(agent, name, g, tr, P (C2), ǫ) |
(agent, name, g, tr, F (C2), R) |
(ǫ, name, g, tr, C1, ǫ)

C1 := C (And C)+ |C (Or C)+ |C (Seq C)+

C2 := a |C3 (And C3)
+ |C3 (Or C3)

+ |C3 (Seq C3)
+

C3 := (ǫ, name, ǫ, ǫ, C2, ǫ)
R := C | ǫ

where a ∈ Σ, agent ∈ A and name ∈ N . Guard g
is ǫ or a conjunctive formula of atomic constraints
of the form: v ∼ n or v − w ∼ n, for v, w ∈ V ,
∼∈ {≤, <,=, >,≥} and n ∈ IN, whereas time re-
striction tr is ǫ or a conjunctive formula of atomic
constraints of the form: x ∼ n or x − y ∼ n, for
x, y ∈ C, ∼∈ {≤, <,=, >,≥} and n ∈ IN. O, P
and F are the deontic operators corresponding to
obligation, permission and prohibition, respectively,
where O(C2) states the obligation of performing C2,
F (C2) states prohibition of performing C2, and P (C2)
states the permission of performing C2. And, Or and
Seq are the operators corresponding to the refine-
ments we have in C-O Diagrams, AND-refinement,
OR-refinement and SEQ-refinement, respectively. 2

The simplest contract we can have in C-O Dia-
grams is that consisting of only one box including
the elements agent and name. Optionally, we can
specify a guard g and a time restriction tr. We also
have a deontic operator (O, P or F) applied over an
atomic action a, and in the case of obligations and
prohibitions it is possible to specify another contract
C as a reparation.

We use C1 to define a more complex contract where
we combine different deontic norms by means of any
of the different refinements we have in C-O Diagrams.
In the box where we have the refinement into C1 we
cannot specify an agent nor a reparation because these
elements are always related to a single deontic norm,
but we still can specify a guard g and a time restriction
tr that affect all the deontic norms we combine.

Once we write a deontic operator in a box of our
diagram, we have two possibilities as we can see in
the specification of C2: we can just write a simple
action a in the box, being the deontic operator applied
only over it, or we can refine this box in order to apply
the deontic operator over a compound action. In this
case we have that the subboxes (C3) cannot define a
new deontic operator as it has already been defined
in the parent box (affecting all the subboxes).

Example 3: For example, we can consider C :=
(Buyer,Example1, ǫ, ǫ, O(pay), C ′) as a very simple

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

OR

pay

C'

Buyer

Example1

Example2

C''

x<5

OR

Example3

O

O

C'

Buyer

Option1 Option2

pay_cash pay_card

Fig. 6. Syntax examples

contract specifying for a buyer the obligation of pay-
ing, otherwise contract C ′ comes into effect (Fig.
6, on the bottom left). C := (ǫ, Example2, ǫ, x <
5, C ′ OrC ′′, ǫ) is a composed contract specifying that
contract C ′ or contract C ′′ must be satisfied in order to
satisfy C within 5 time units (Fig. 6, on the top left).
Finally, C := (Buyer,Example3, ǫ, ǫ, O(C ′ OrC ′′), ǫ),
where we have that C ′ := (ǫ, Option1, ǫ, ǫ, pay cash, ǫ)
and C ′′ := (ǫ, Option2, ǫ, ǫ, pay card, ǫ), is a contract
specifying for a buyer the obligation of paying by cash
or by credit card (Figure 6, on the right). 2

3 C-O Diagrams SEMANTICS

The C-O Diagrams semantics is defined by means of
a transformation into a Network of Timed Automata
(NTA), that is defined as a set of timed automata
[12], [13] that run simultaneously, using the same set
of clocks and variables, and synchronizing on the
common actions. In this section we first present an
extension of timed automata suitable as a semantic
domain for C-O Diagrams, and we finish by showing
the transformation rules to translate our diagrams into
such timed automata.

3.1 Timed automata extended with ordering

In what follows we consider a finite set of real-valued
variables C ranged over by x, y, . . . standing for clocks,
a finite set of non-negative integer-valued variables
V , ranged over by v, w, . . . and a finite alphabet Σ
ranged over by a, b, . . . standing for actions. We will
use letters r, r′, . . . to denote sets of clocks. We will
denote by Assigns the set of possible assignments,
Assigns = {v := expr | v ∈ V}, where expr are
arithmetic expressions using naturals and variables.
Letters s, s′ . . . will be used to represent a set of
assignments.

A guard or invariant condition is a conjunctive for-
mula of atomic constraints of the form: x ∼ n,
x − y ∼ n, v ∼ n or v − w ∼ n, for x, y ∈ C, v, w ∈ V ,
∼∈ {≤, <,=, >,≥} and n ∈ IN. The set of guard
or invariant conditions will be denoted by G, ranged
over by g, g′,

Definition 2: (Timed Automaton)
A timed automaton is a tuple (N,n0, E, I), where N is
a finite set of locations (nodes), n0 ∈ N is the initial
location, E ⊆ N ×G ×Σ×P(Assigns)× 2C ×N is the
set of edges, where the subset of urgent edges is called
Eu ⊆ E, and they will graphically be distinguished as
they will have their arrowhead painted in white. I :

N → G is a function that assigns invariant conditions
(which could be empty) to locations. 2

From now on, we will write n
g,a,r
−→s n′ to de-

note (n, g, a, s, r, n′) ∈ E, and n
g,a,r
−→us

n′ when
(n, g, a, s, r, n′) ∈ Eu.

In an NTA we distinguish two types of actions:
internal and synchronization actions. Internal actions
can be executed by the corresponding automata in-
dependently, and they will be ranged over the letters
a, b Synchronization actions, however, must be ex-
ecuted simultaneously by two automata, and they will
be ranged over letters m,m′, . . . and come from the
synchronization of two actions m! and m?, executed
from two different automata. Due to lack of space,
we refer the reader to [14] for the definition of the
semantics of timed automaton and NTA.

To specify the C-O Diagrams semantics, we add the
definition of two orderings, ≺N and ≺E , where:

• ≺N is a (strict, partial) ordering on N where n ≺N

n′ means that node n is better than node n′.
• ≺E is a (strict, partial) ordering on E where e ≺N

e′ means that edge e is better than edge e′.

We also add a violation set V (n) associated to each
node n in N , that is the set of contractual obligations
and prohibitions that are violated in n.

Definition 3: (Violation Set) Let us consider the
set of contractual obligations and prohibitions CN
ranged over cn, cn′,. . . standing for identifiers of
obligations and prohibitions. We write n 6|= cn to
express that obligation or prohibition cn is violated
in node n. Therefore, the violation set is defined as
V (n) = {cn | cn ∈ CN and n 6|= cn}. 2

Another set called satisfaction set S(n) is also
associated to each node n in N . This set is composed
by the contractual obligations and prohibitions that
have already been satisfied in n.

Definition 4: (Satisfaction Set) Let us consider the
set of contractual obligations and prohibitions COF
ranged over cof , cof ′,. . . standing for identifiers of
obligations and prohibitions. We write n |= cof to
express that obligation or prohibition cof has been
satisfied in node n (we consider a prohibition satisfied
in node n if it has not been violated and cannot be
violated anymore because the time frame specified for
the prohibition has expired). Hence, the satisfaction set
is defined as S(n) = {cof | cof ∈ COF and n |= cof}.
2

Once these two sets have been defined, we can
formally define the ordering on nodes ≺N , by com-
paring the violation sets and the satisfaction sets of the
nodes, and the ordering on edges ≺E , by comparing
the violation sets and the satisfaction sets of the target
nodes of the edges.

Definition 5: (Ordering on Nodes) A node n1 is better
than another node n2 if the violation set of n1 is a proper
subset of the violation set of n2 or, if the violation sets
are the same, a node n1 is better than another node n2

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

if the satisfaction set of n1 is a proper superset of the
satisfaction set of n2, that is, n1 ≺N n2 iff (V (n1) ⊂
V (n2)) or (V (n1) = V (n2) and S(n1) ⊃ S(n2)). 2

Definition 6: (Ordering on Edges) An edge e1 is better
than another edge e2 if the source node is the same
in both cases but the violation set of the target node
of e1 is a proper subset of the violation set of the
target node of e2 or, if the violation sets are the
same, an edge e1 is better than another edge e2
if the satisfaction set of the target node of e1 is a
proper superset of the satisfaction set of the target
node of e2. Considering e1 = (n1, g1, a1, s1, r1, n1

′) and
e2 = (n2, g2, a2, s2, r2, n2

′), e1 ≺E e2 iff (n1 = n2)
and (V (n1

′) ⊂ V (n2
′) or (V (n1

′) = V (n2
′) and

S(n1
′) ⊃ S(n2

′))). 2

Finally, another set called permission set P (n) is
associated to each node n in N . This set influences
neither the ordering on nodes nor the ordering on
edges, it is used just to record the permissions in the
contract that have been made effective.

Definition 7: (Permission Set) Let us consider the
set of contractual permissions CP ranged over cp,
cp′,. . . standing for identifiers of permissions. We
write n |= cp to express that permission cp has already
been made effective in node n. Then, the permission set
is defined as P (n) = {cp | cp ∈ CP and n |= cp}. 2

Graphically, when we draw a timed automaton
extended with these three sets, we write under each
node n between braces its violation set V (n) on
the left, its satisfaction set S(n) on the centre and
its permission set P (n) on the right. In the initial
node of the automata we build corresponding to C-O
Diagrams these three sets are empty. By default, a node
keeps in these sets the same content of the previous
node when we compose the automata. Only in a few
cases the content of these sets is modified (when an
obligation or a prohibition is violated, an obligation
or a prohibition is satisfied or a permission is made
effective).

Example 4: For example, considering a simple con-
tract having only the clause “The coffee machine is
obliged to deliver coffee after payment in less than
one minute” of Example 1, that we call Del Coffee, in
the corresponding automaton we have a node n0

with empty violation, satisfaction and permission sets
before the violation or satisfaction of the obligation
(V (n0) = {}, S(n0) = {} and P (n0) = {}), another
node n1 where the obligation is satisfied and it is
added to the satisfaction set (V (n1) = {}, S(n1) =
{Del Coffee} and P (n1) = {}) and finally another
node n2 where the obligation is violated and it is
added to the violation set (V (n2) = {Del Coffee},
S(n2) = {} and P (n2) = {}). Therefore, according to
the definition of the ordering on nodes, we have that
the order between these nodes is n1 ≺N n0 ≺N n2. 2

Concerning the real-time restrictions tr specified
in the contract, the two types of time restrictions
we can have in C-O Diagrams must be translated

in a different way for their inclusion into a timed
automaton construction:

• A time restriction specified using absolute time
must be specified in timed automata by rewriting
the terms in which absolute time references occur.
For that purpose we define a global clock T ∈
C that is never reset during the execution of the
automata and, taking into account the moment
at which the contract is enacted, we rewrite the
absolute time references as deadlines involving
clock T and considering the smallest time unit
needed in the contract.

• A time restriction specified using relative time
must be specified in timed automata by intro-
ducing an additional clock to register the amount
of time that has elapsed since another clause has
been satisfied, resetting the additional clock value
when this happens and specifying the deadline
using it. We call this clock tname, where name is
the clause used as reference for the specification
of the time restriction. Therefore, we define a set
of additional clocks Cadd = {tname | tname ∈ C}
including a clock for every clause that is used as
reference in the time restriction of at least another
clause.

As a result, the set of clocks of the timed automata
would be C = {T} ∪ Cadd. When we construct the
timed automata corresponding to C-O Diagrams, we
always consider (x ≥ t1) and (x ≤ t2) as the interval
corresponding to the time restriction tr of the clause,
where x ∈ C is the clock used for its specification
(x = T in the case of absolute time and x = tname in
the case of relative time, being name the clause used
as reference), t1 ∈ IN is the beginning of the interval
and t2 ∈ IN is the end of the interval (t1 ≤ t2). If tr
does not define the lower bound of the interval we
take t1 = 0, if tr does not define the upper bound of
the interval we take t2 = ∞, and if tr = ǫ we take
t1 = 0, t2 = ∞ and x = T .

Example 5: For example, in the case of absolute
time let us consider a clause that must be satisfied
between the 5th of November and the 10th of November,
and that the contract containing this clause is enacted
the 31st of October. If we suppose that days is the
smallest time unit used in the contract for the specifi-
cation of real-time restrictions, the time restriction of
this clause is written as (T ≥ 5) and (T ≤ 10). In the
case of relative time let us consider a contract with a
clause that must be satisfied between 5 and 10 days
after another clause name1 has been satisfied. In this
case we define an additional clock tname1 that is reset
to zero when clause name1 is satisfied (tname1 := 0)
and the time restriction of the other clause is written
as (tname1 ≥ 5) and (tname1 ≤ 10). 2

3.2 Transformation rules

Once we have given these extensions of the definition
of timed automata and we have explained how the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

Zinit endZ

Binit Bend

ORinit

Ainit Aend

ORend

{V}{S}{P} {V}{S}{P}

{V}{S}{P} {V}{S}{P}

{V}{S}{P} {V}{S}{P}

{V}{S}{P} {V}{S}{P}

Ainit Aend Binit Bend Zinit endZ

{V}{S}{P} {V}{S}{P} {V}{S}{P} {V}{S}{P} {V}{S}{P} {V}{S}{P}

Ainit Aend Binit Bend Zinit endZX X X
{V}{S}{P} {V}{S}{P} {V}{S}{P} {V}{S}{P} {V}{S}{P} {V}{S}{P}

aenda init

a

{V}{S}{P} {V}{S}{P}

(A)

(B)

(D)
(C)

Fig. 7. Automata corresponding to a simple action a and to compound actions

different kinds of time restriction can be expressed,
considering all the different elements we can specify
in a C-O Diagram, we can define the transformation of
the diagrams into timed automata by induction using
several transformation rules. We are going to give here
an informal description of the transformation rules, a
formal definition of each one of these rules can be
seen in Appendix A:

(1) An atomic action in a C-O Diagram, that is,
(ǫ, name, ǫ, ǫ, a, ǫ) corresponds to a timed automa-
ton with an initial node (ainit), a final node (aend)
and an edge from the initial node to the final node
performing action a The violation (V), satisfaction
(S) and permission (P) sets are not modified,
so V (ainit) = V (aend), S(ainit) = S(aend) and
P (ainit) = P (aend). This timed automaton can be
seen in Fig. 7-(A).

(2) A compound action in a C-O Diagram where an
AND-refinement is used to compose actions, that
is, (ǫ, name, ǫ, ǫ, C1 AndC2 And . . . AndCn, ǫ) cor-
responds to the cartesian product of the automata
corresponding to each one of the subcontracts.
The violation (V), satisfaction (S) and permission
(P) sets are not modified, so they are the same
in all the nodes. This composition of timed au-
tomata is shown graphically in Fig. 7-(B).

(3) A compound action in a C-O Diagram where an
OR-refinement is used to compose actions, that
is, (ǫ, name, ǫ, ǫ, C1 OrC2 Or . . . Or Cn, ǫ) corre-
sponds to a new automaton in which the au-
tomata corresponding to each one of the sub-
contracts is considered as an alternative. The
violation (V), satisfaction (S) and permission (P)
sets are not modified, so they are the same in all
the nodes. This composition of timed automata is
shown graphically in Fig. 7-(C).

(4) A compound action in a C-O Diagram where a
SEQ-refinement is used to compose actions, that
is, (ǫ, name, ǫ, ǫ, C1 Seq C2 Seq . . . Seq Cn, ǫ) corre-
sponds to a new automaton in which the au-
tomata corresponding to each one of the sub-
contracts are connected in sequence. Again, the
violation (V), satisfaction (S) and permission (P)
sets are not modified, so they are the same in all
the nodes. This composition of timed automata is

Cinit endC

ORinit

Ainit

ORend

{V}{S}{P} {V}{S}{P}

{V}{S}{P} {V}{S}{P}

{V}{S}{P}

Binit

{V}{S}{P}

Aend

Bend

{V}{S}{P}

"delivers tea"

"delivers cappuccino"

"delivers coffee"

{V}{S}{P}

Fig. 8. Example of an OR-refinement of actions

shown graphically in Fig. 7-(D).

Example 6: For example, considering the operation
of the coffee machine, we can have the actions “deliv-
ers coffee”, “delivers tea” and “delivers cappuccino”
composed by an OR-refinement (only one of them is
performed). The automaton that we obtain, according
to rule (3), is shown in Fig. 8. 2

Until now, we have seen how the automata cor-
responding to the different actions (atomic or com-
pound) specified in a C-O Diagram are constructed
and we have seen that these translations do not mod-
ify the content of any of the sets (violation, satisfaction
or permission). Next, we define the transformation
rules specifying how these “action” automata are
modified when we apply a deontic norm (obligation,
permission or prohibition) over the actions in the C-O
Diagram:

(5) The application of an obligation, a permission
or a prohibition over an action in a C-O Dia-
gram, i.e., (agent, name, g, tr, O/P/F (C), R) cor-
responds to an automaton where the obliga-
tion/prohibition of performing the action speci-
fied in the subcontract C can be skipped, fulfilled
or violated, whereas the permission of perform-
ing the action can be skipped, made effective
or not made effective. The resulting timed au-
tomata are shown graphically in Fig. 9, where
(A) corresponds to obligation, (B) corresponds to
permission and (C) corresponds to prohibition.
We consider a one of the atomic actions included
in the subcontract C.

Example 7: For example, if we consider the clause

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

Ainit Aend

{V}{S}{P} {V}{S,name}{P}

A timeA skip

{V}{S}{P}

g=false

x <= t2+1

(x>= t1) and (x<=t2)

agent
a

x = t2+1

{V,name}{S}{P}

Ainit Aend

{V}{S}{P} {V}{S}{P,name}

A timeA skip

{V}{S}{P}

g=false

{V}{S}{P}

x <= t2+1

(x>= t1) and (x<=t2)

agent
a

x = t2+1

Ainit Aend

{V}{S}{P} {V,name}{S}{P}

A timeA skip

{V}{S}{P}

g=false

{V}{S,name}{P}

x <= t2+1

(x>= t1) and (x<=t2)

agent
a

x = t2+1
Rinit Rend

{V,name}{S}{P} {V}{S’}{P’}

(A) (B)

(C)

(D)

Fig. 9. Automata corresponding to deontic norms and automaton corresponding to a reparation

Ainit Aend

{V}{S}{P} {V}{S,Del_Coffee}{P}

A time

x <= 2

x = 2

{V,Del_Coffee}{S}{P}

coffee machine
"delivers coffee"

x<=1

Fig. 10. Example of an Obligation over an action

“The coffee machine is obliged to deliver coffee af-
ter payment in less than one minute”, that we call
Del Coffee, about the operation of the coffee machine,
the automaton that we obtain, according to rule (5), is
shown in Fig. 10, where x is the clock used to control
the deadline. 2

We can see that the above constructions can include
a reparation contract R in the cases of obligation and
prohibition. If this reparation is defined, we have to
construct the automaton corresponding to the repara-
tion contract and integrate this automaton as part of
the automaton we have generated for the obligation
or prohibition:

(6) An obligation or prohibition in a C-O Diagram
specifying a contract reparation R 6= ǫ corre-
sponds to the obligation automaton O(A) or the
prohibition automaton F (A) together with the
reparation automaton R, considering the node
with name in its violation set (Avio) as the initial
node of the reparation automaton (Rinit). In the
ending node of the reparation automaton (Rend)
name is removed from the violation set, as the
violation has been repaired. In this node we also
have that the satisfaction set and the permission
set are different from the ones we have in the
initial node of the reparation because we have to
include in the satisfaction set all the obligations
and prohibitions satisfied in the reparation con-
tract, and in the permission set all the permissions
that have been made effective in the reparation

Ainit Aend

{V}{S}{P} {V}{S,Del_Coffee}{P}

A time

x <= 2

x = 2

{V,Del_Coffee}{S}{P}

coffee machine
"delivers coffee"

x<=1

Rend

{V}{S,Ref_Money}{P}

Afinal

{V}{S_final}{P}

coffee machine
"refunds money"

Fig. 11. Example of a Reparation to a violation

contract. This structure is shown graphically in
Fig. 9-(D).

Finally, we define how the rules corresponding to
different deontic norms are composed when we have
a composition of deontic norms in our C-O Diagram.
To make this composition possible, first we need to
have only one ending node in the automata corre-
sponding to the different deontic norms:

(7) If we have an automaton corresponding to an
obligation, a prohibition or a permission in a
C-O Diagram, the corresponding automaton with
only one ending node is obtained by adding
a new ending node and urgent edges from the
old ending nodes to this new node, preserving
in the new node the violation, satisfaction and
permission sets of the previous node. Notice that
in the case of obligation and prohibition, if there
is no reparation defined, the node violating the
norm is a final node of the whole automaton
construction where the contract is breached.

Example 8: For example, if together with the obli-
gation of delivering coffee we consider the reparation
clause “The coffee machine is obliged to refund money
if coffee is not deliver”, that we call Ref Money, about
the operation of the coffee machine, the automaton
that we obtain, according to rules (5), (6) and (7), is
shown in Fig. 11, where we have that in node Rend

the violation of clause Del Coffee has been repaired,
so it is removed from the violation set, and in the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

C1init C1final

tr

C init
m

Cfinal

Cskip

C2init C

tr

C1syn C2syn C2syn’

Cninit CnfinalCn−1syn

!1 m !1

m ?1 m !2 m !2

tr

m ?n−1

g=false

{V}{S}{P} {V1}{S1}{P1}{V}{S}{P}

C1syn’
m ?1

{ }{ }{ }

Cn−1syn’
m ?n−1

2final

{ }{ }{ }

{V2}{S2}{P2}

{Vn}{Sn}{Pn}

{ }{ }{ }

{ }{ }{ }

{ }{ }{ }

{V}{S}{P}

{Vn}{Sn}{Pn}

{Vfinal}{Sfinal}{Pfinal}

{V2}{S2}{P2} {V2}{S2}{P2}

Cninit nfinalC

C2init C2final

C init

C1init C1final

Cfinal

Cskip

tr

tr

tr

g=false

{V}{S}{P}

{V}{S}{P}

{V}{S}{P}

{V}{S}{P}

{V}{S}{P} {Vn}{Sn}{Pn}

{V2}{S2}{P2}

{V1}{S1}{P1}

{Vfinal}{Sfinal}{Pfinal}}

C1init C1final 2init 2final Cninit nfinalC

Cskip

trtr
{V}{S}{P}

{V}{S}{P}

{V1}{S1}{P1} {V1}{S1}{P1} {V2}{S2}{P2} {Vn}{Sn}{Pn}
tr

g=false

{Vn−1}{Sn−1}{Pn−1}

C C

(C)

(B)(A)

Fig. 12. Automata corresponding to the compositions of deontic norms

satisfaction set (Sfinal) of node Afinal it is kept the
satisfaction set of the previous node. 2

The composition of the automata corresponding
to different deontic norms is now defined by three
additional transformation rules:

(8) If several norms are composed by an AND-
refinement, that is, we have specified the dia-
gram (ǫ, name, g, tr, C1 AndC2 And . . . AndCn, ǫ),
their composition corresponds to a network of
automata in which we consider all the norms we
are composing in parallel. This composition of
timed automata is shown graphically in Fig. 12-
(A).

(9) If several norms are composed by an OR-
refinement, that is, we have specified the
diagram (ǫ, name, g, tr, C1 OrC2 Or . . . Or Cn, ǫ),
their composition corresponds to an automaton
in which the automata corresponding to each
one of the norms is considered as an alternative.
This composition of timed automata is shown
graphically in Fig. 12-(B).

(10) If several norms are composed by a SEQ-
refinement, that is, we have specified the di-
agram (ǫ, name, g, tr, C1 Seq C2 Seq . . . Seq Cn, ǫ),
their composition corresponds to an automaton
in which the automata corresponding to each
one of the norms are connected in sequence.
This composition of timed automata is shown
graphically in Fig. 12-(C).

Example 9: For example, if we consider a compo-
sition with an AND-refinement of the clauses “The
coffee machine is obliged to deliver coffee after pay-
ment in less than one minute”, that we call Del Coffee,
and “The coffee machine is obliged to deliver milk
after payment in less than one minute”, that we call
Del Milk, about the operation of the coffee machine,
the network of automata that we obtain, according to

{V}{S}{P}

m !1 C1final Cfinal

m !1

x <= 2

1time

{V,Del_Coffee}{S}{P}

1syn C2init

{ }{ }{ }

C2end

{ }{Del_Milk}{ }

m ?1

x <= 1

C2time

{Del_Milk}{ }{ }
x <= 2

x = 2

C

{ }{Del_Milk}{ }

m ?1

Cinit

{V}{S}{P}

C
1init

x = 2

<= 1x

coffee machine
"delivers coffee"

C

{V}{S,Del_Coffee}{P} {V}{S,Del_Coffee,Del_Milk}{P}

C

{ }{ }{ }

coffee machine
"delivers milk"

1syn’

Fig. 13. Example of an AND-refinement of obligations

rule (8), is shown in Fig. 13, where x is the clock used
to control the deadline and m1 is the urgent channel
used to synchronize both automata. 2

4 UPPAAL IMPLEMENTATION OF C-O DIA-
GRAMS

The implementation of the NTAs we have obtained
in UPPAAL is quite straightforward as both, the
NTA formalism considered by the tool and the NTA
formalism that we have considered, are very similar.
There are only a few implementation points that need
a more detailed explanation:

1) As there is no way in UPPAAL of directly ex-
pressing that an edge without synchronisation
should be taken without delay, that is, there are
no urgent edges, we have to find an alternative
way of encoding this behaviour. For this purpose
we consider the modelling pattern proposed in
[14]. The encoding of urgent edges introduces
an extra automaton, that we call Urgent, with
a single location and a self loop. The self loop
synchronises on an urgent channel that we call
urg edge. An edge can now be made urgent by
performing the complimentary action.

2) The performance of actions by agents is im-
plemented by means of boolean variables in

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

UPPAAL. We define a boolean variable called
agent action for each one of the actions consid-
ered in the contract. These variables are initial-
ized to false and, when one of the actions is
performed by an agent in one of the edges, we
update the value of the corresponding variable to
true.

3) Finally, the violation, satisfaction and permission
sets are implemented in UPPAAL by means of
boolean arrays and constant integers with the
names of the clauses of the contract containing
obligations, prohibitions or permissions. We de-
fine an array V for violation, an array S for
satisfaction, and an array P for permission, all of
them initialized to false. The size of the arrays V
and S is equal to the number of obligations and
prohibitions in the contract, whereas the size of
the array P is equal to the number of permissions.
We also define constant integers with the name
of the clauses containing obligations and prohibi-
tions, initializing each one of them to a different
value (from 0 to the size of the arrays V and S
minus 1), and constant integers with the name
of the clauses containing permissions, initializing
each one of them to a different value (from 0 to
the size of the array P minus 1). These constants
are used as indexes in the arrays. When taking
a transition where the target node contains at
least one modified set (an obligation/prohibition
is violated, an obligation/prohibition is satisfied
or a permission is made effective), we update
to true in the proper array the value of the
index corresponding to the clause. In the case of
repairing an obligation/prohibition violation, the
index corresponding to the proper clause in V is
set to false.

Example 10: For example, let us consider a contract
with only one obligation (Clause 1), one prohbition
(Clause 2) and one permission (Clause 3). For the im-
plementation of the corresponing NTA in UPPAAL we
have to define a boolean array V and a boolean array
S of size two (one obligation plus one prohibition),
and a boolean array P of size one (only one permis-
sion). The constant integers Clause 1 = 0, Clause 2 =
1 and Clause 3 = 0 are also defined as indexes for
the arrys. In this way, we can properly update these
arrays. For instance, if it is taken a transition where the
obligation (Clause 1) is satisfied, we update the array
S with the operation S[Clause 1] = true, and if if it
is taken a transition where the permission (Clause 3)
is made effective, we update the array P with the
operation P [Clause 3] = true. 2

5 CASE STUDY: ONLINE AUCTIONING PRO-
CESS (OAP)
The case study presented in this section is inspired by
the motivating example described in [15]. It consists of

an Online Auctioning Process involving the interaction
between three different agents: the buyer, the seller,
and the auction service.

The description of the process we are considering
here is the following: the online auctioning starts
when a seller wants to auction an item. Therefore, the
seller has one day to upload valid information about
the item he wants to sell, being forbidden the sale of
inadequate items such as replicas of designers items
or wild animals. Once it has been checked that the
item can be auctioned, the auction service also has one
day to publish the auction of the item. After that, the
buyer can place bids during seven days. When this
period of time is over, if the bid placed by the buyer is
the highest one, the activities concerning the payment
and the shipment of the item start.

First, the buyer has three days to perform the pay-
ment, which can be done by means of credit card or
PayPal. After the payment has been performed, the
seller has fourteen days to send the item to the buyer. If
the item is not received within this period of time, the
auction service has seven days to refund the payment
to the buyer and can penalize the seller in some way
(for example not allowing the seller to auction new
items for a period of time). However, if the reception
of the item by the buyer is acknowledge on time, the
auction process is considered finished successfully.

In Table 1 we show a list of the obligations, per-
missions and prohibitions that can be inferred from
the description of the process, where the obligation
specified by Clause 9 and the permission specified by
Clause 10 are a possible reparation for the violation of
Clause 8. In this table we can see that there are nine
clauses specifying real-time constraints. In Clause 2
and Clause 3 it is specified that after selecting an item
to auction (Clause 1), the buyer has one day to upload
valid information about the item, being forbidden to
auction an inadequate item. In Clause 4 we have that
the auction service has one day to publish the auction
of the item after it has been checked (Clause 2 and
Clause 3). In Clause 5 we have that the buyer is
allowed to place bids for the item during seven days
after publication (Clause 4). In Clause 6 and Clause
7 it is specified that the buyer has three days to pay
the item (respectively by credit card or PayPal) after
winning the auction. Clause 8 specifies that the seller
has fourteen days to send the item to the buyer after
payment (Clause 6 or Clause 7). Finally, Clause 9 and
Clause 10 specify that the auction service has seven
days to refund the payment to the buyer if the item
is not received on time and can penalize the seller in
this period of time. We can also see in Table 1 that
Clause 6, Clause 7 and Clause 8 are conditioned to
the result of the auction, that is, they are only applied
if the buyer has won the auction.

The main problem we have with this textual spec-
ification is that it is no clear the relationship existing
between the different clauses, which makes difficult

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

Clause Agent Modality Action Condition Time
1 Seller Permission Can select an item to auction ∅ ∅
2 Seller Prohibition Auctions a fraudulent item ∅ One day after selection (t1)
3 Seller Obligation Uploads valid information ∅ One day after selection (t1)
4 Auction S. Obligation Publishes the auction ∅ One day after checked (t2)
5 Buyer Permission Can place bids for the item ∅ Seven days after publication (t3)
6 Buyer Obligation Pays the item by credit card Highest bid (g1) Three days after auction (t4)
7 Buyer Obligation Pays the item by PayPal Highest bid (g1) Three days after auction (t4)
8 Seller Obligation Sends the item to the buyer Highest bid (g1) Fourteen days after auction (t5)
9 Auction S. Obligation Refunds the payment ∅ Seven days after violation of C.8 (t6)
10 Auction S. Permission Can penalize the seller ∅ Seven days after violation of C.8 (t6)

TABLE 1
Norms of the Online Auctioning Process contract

Online_Auctioning

Auction_Item Check_Item Auction_Process

-

- -

SEQ

Payment_Shipment

-

Seller

P a1

g1

t1

Fig. 14. Top-level of the Online Auctioning Process

any kind of analysis. Therefore, we aim at a specifica-
tion language (C-O Diagrams) that clearly defines the
relationship between the different clauses, but not so
formal that an expert is needed.

5.1 OAP C-O Diagrams

In what follows we model this contract with C-O Di-
agrams taking into account the information provided
in Table 1. In these diagrams we use an to denote
the action corresponding to clause number n and the
reparation for Clause 8 is called R1. We also use t1 to
denote the real-time constraint of Clause 2 and Clause
3, t2 to denote the real-time constraint of Clause 4, t3
to denote the real-time constraint of Clause 5, t4 to
denote the real-time constraint of Clause 6 and Clause
7, t5 to denote the real-time constraint of Clause 8, and
t6 to denote the real-time constraint of Clause 9. The
condition of placing the highest bid is denoted as g1.

In Fig. 14 we show the top-level of the C-O Diagram
we specify for the process, called Online Auctioning,
starting the sequence from the permission specified
in Clause 1, that has been called Auction Item. We
have grouped the rest of the clauses in Table 1 (except
the ones corresponding to the reparation) into three
more general clauses with a sequence relationship
between them: Check Item (Clause 2 and Clause 3),
Auction Process (Clause 4 and Clause 5), and Pay-
ment Shipment (Clause 6, Clause 7 and Clause 8).
These general clauses cover the different phases that
we have identified in the Online Auctioning Process.

The decomposition of clause Check Item into sub-
clauses can be seen in Fig. 15, where an AND-
refinement is used in the decomposition and the real-
time constraint t1 is affecting the whole composition.
We have on the left-hand side the specification of
the prohibition specified in Clause 2, that has been
called Inadequate Item, and on the right-hand side the
obligation specified in Clause 3, that has been called
Valid Information.

O

-

Check_Item

a3

Inadequate_Item Valid_Information

F a2

Seller Seller

AND

a2

t1

Fig. 15. Decomposition of clause Check Item

P

-

Auction_Process

a5

Publish_Item Place_Bid

O a4

Auction Service Buyer

SEQ

t3t2

Fig. 16. Decomposition of clause Auction Process

The decomposition of clause Auction Process into
subclauses can be seen in Fig. 16, where a SEQ-
refinement is used in the decomposition. We have
on the left-hand side the specification of the obli-
gation specified in Clause 4, that has been called
Publish Item, including the real-time constraint t2, and
on the right-hand side the permission specified in
Clause 5, that has been called Place Bid, including
the real-time constraint t3. We can see in this clause
that the repetition structure of C-O Diagrams is used
to model that the buyer is allowed to place multiple
bids.

The decomposition of clause Payment Shipment into
subclauses can be seen in Fig. 17, where a SEQ-
refinement is used again in the decomposition and the
evaluation of the condition g1 is taken into account for
the application of the clauses. We have on the left-
hand side the obligation specified in Clause 6 and
Clause 7 about the payment, that has been called
Payment Item, including the real-time constraint t4
and composing the actions of paying by credit card
or PayPal by means of an OR-refinement. On the right-
hand side we have the obligation specified in Clause
8, that has been called Send Item, including the real-
time constraint t5 and a reference to reparation R1.

Finally, in Fig. 18 we can see the diagram corre-
sponding to reparation R1. It has been called Re-
fund Penalty, including the real-time constraint t6, and
it is decomposed into two subclauses by means of an
AND-refinement. The subclause on the left corresponds
to the obligation specified in Clause 9, that has been

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

Payment_Item Send_Item

-

SEQ

Buyer

O -

g1

Payment_Shipment

a8t4
R1

Ot5

Seller

a7a6

OR

PaypalCredit_Card

Fig. 17. Decomposition of clause Payment Shipment

R1

Refund_Buyer Penalty_Seller

-

AND

Refund_Penalty

O P

Auction ServiceAuction Service

a10a9

t6

Fig. 18. Reparation of clause Send Item

called Refund Buyer, and the subclause on the right
corresponds to the permission specified in Clause 10,
that has been called Penalty Seller.

5.2 OAP Timed Automata

Next, we are going to show how this contract is
translated into a network of timed automata accord-
ing to the C-O Diagrams semantics, where the basic
transformation rule (1) is applied to obtain an edge
executing each one of the actions considered in the
contract.

In Fig. 19 we can see the translation into automata
corresponding to the first part of the contract. In the
initial state n0 of main automaton A0 we have that the
violation, satisfaction and permission sets are empty
(V 0 = {}, S0 = {} and P0 = {}).

As the first norm of the contract is a permission over
an action without time restriction nor guard, by apply-
ing the transformation rule (5) we obtain the state n1

of A0, adding the clause Auction Item to its permission
set (V 1 = {}, S1 = {} and P1 = {Auction Item}), and
the edge from n0 to n1 performing agent seller action
a1. In this edge the clock t1, used to model the time
restriction with the same name, is reset.

Considering that there is a SEQ-refinement con-
necting this first norm with the rest of the contract,
by applying rule (10) we connect state n1 of A0 with
state n2 of A0 by means of an urgent edge, keeping
in n2 the same sets that in n1.

As the next part of the contract consists of an
AND-refinement composing two different norms, the
transformation rule (8) is applied, defining a new
automaton A1 to execute in parallel with the main
automaton A0. The edge from n2 to n3 in A0 and the
edge from n0 to n1 in A1 are used to synchronize
by means of the channel m1. Now we have on the
one hand the prohibition over an action considered in
automaton A0, and on the other hand the obligation

n0

{V0}{S0}{P0}

n1

Seller
a1

t 1

{V1}{S1}{P1}

n2

{V2}{S2}{P2}

n3

{V3}{S3}{P3}

m !1 n4

{V4}{S4}{P4}

n6

{V6}{S6}{P6}

m !1

:= 0 t 2 := 0t 1= 2

t 1<= 2

n5

t 1<= 1
{V5}{S5}{P5}

Seller
a2

AUTOMATON A

n0

{V0}{S0}{P0}

n1

{V1}{S1}{P1}

n2

{V2}{S2}{P2}

m ?1

Seller
a3

t 1<= 1

n3

{V3}{S3}{P3}
t 1<= 2

t 1= 2

n4

{V4}{S4}{P4}

m ?1

AUTOMATON A

0

1

Fig. 19. First part of automaton A0 and automaton A1

AUTOMATON A0

n7

{V7}{S7}{P7}

n8

a4

{V8}{S8}{P8}

n10 n11

t 2<= 2

n9

{V9}{S9}{P9}
t 2= 2

2<= 1t
t 3 := 0

Auction Service

{V10}{S10}{P10}

t 3<= 8

t 3= 8

t 4

{V11}{S11}{P11}

t 3<= 7

a
Buyer

5

n12

{V12}{S12}{P12}

n13

{V13}{S13}{P13}
g1= false

:= 0

Fig. 20. Second part of automaton A0

over an action considered in automaton A1, so we
apply in both cases rule (5).

Concerning the prohibition in A0, in the node n3 we
keep the same sets that in n2 and, as time restriction
t1 is specified for the norm, the invariant t1 ≤ 2 is
defined in the node. Next, we have an edge from n3

to n5 considering the performance by agent seller of
the forbidden action a2 with the guard t1 ≤ 1, so in
n5 the clause Inadequate Item is added to the violation
set (V 5 = {Inadequate Item}, S5 = {} and P5 =
{Auction Item}), having that n5 is a final node of the
whole automaton as no reparation is defined for the
prohibition and the contract is breached. However, we
also have an edge from n3 to n4 considering that the
forbidden action is not executed with the guard t1 = 2,
so in n4 the clause Inadequate Item is added to the
satisfaction set (V 4 = {}, S4 = {Inadequate Item}
and P4 = {Auction Item}).

In the automaton A1, where we consider the obli-
gation, we have that nodes n0 and n1 have empty
violation, satisfaction and permission sets and, as time
restriction t1 is specified for the norm, the invariant
t1 ≤ 2 is included in n1. Next, we have an edge from
n1 to n2 considering the performance by agent seller
of the obliged action a3 with the guard t1 ≤ 1, so in n2

the clause Valid Information is added to the satisfaction
set (V 2 = {}, S2 = {V alid Information} and P2 =
{}). We also have an edge from n1 to n3 considering
that the obliged action is not executed with the guard
t1 = 2, so in n3 the clause Valid Information is added
to the violation set (V 3 = {V alid Information},
S3 = {} and P3 = {}), having that n3 is also a final
node where the contract is breached.

Finally, to synchronize both automata again by
means of channel m1, we have the edge from n4 to n6

in A0 (resetting the clock t2 used to model the time
restriction with the same name) and the edge from
n2 to n4 in A1. In node n4 in A1 we keep the sets
of n2, but in node n6 in A0 we add the satisfaction of
clause Valid Information to its satisfaction set (V 6 = {},
S6 = {Inadequate Item, V alid Information} and
P6 = {Auction Item}).

In Fig. 20 we can see the automaton corresponding

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

AUTOMATON A

g1= true
n14

{V14}{S14}{P14}

Buyer
a6

{V15}{S15}{P15}

t 4<= 3
t 5 := 0

t 4<= 4

g1= true
n16

{V16}{S16}{P16}

n17

a7

{V17}{S17}{P17}

t 4<= 3
t 5 := 0

t 4<= 4

n18

{V18}{S18}{P18}

t 4= 4

t 4= 4

n19

{V19}{S19}{P19}

n20

{V20}{S20}{P20}

Buyer

n21

a8

t 5<= 14
n27

{V27}{S27}{P27}

Seller

n15

n22
n23 n24

a9

t 6<= 7
n26

{V26}{S26}{P26}{V24}{S24}{P24}

m !2

Auction Service6t <= 8

n25

{V25}{S25}{P25}

{V23}{S23}{P23}
t 6= 8

n0

{V0}{S0}{P0}

n1

{V1}{S1}{P1}

n2

{V2}{S2}{P2}

m ?2 a10

t 6<= 7
n4

{V4}{S4}{P4}

AUTOMATON A

0

t 5<= 15

t 5= 15

t 6 := 0

Auction Service

n3

{V3}{S3}{P3}

t 6<= 8

t 6= 8

n5

{V5}{S5}{P5}

2

m ?2

{V22}{S22}{P22}

{V21}{S21}{P21}

m !2

Fig. 21. Third part of automaton A0 and automaton A2

to the second part of the contract, that is, starting
from clause Auction Process. We first have an
obligation over an action, so we apply rule (5)
again, preserving in node n7 the same sets that in
n6 and adding also the node n8 (V 8 = {}, S8 =
{Inadequate Item, V alid Information, Publish Item}
and P8 = {Auction Item}) and the
violation node n9 (V 9 = {Publish Item},
S9 = {Inadequate Item, V alid Information} and
P9 = {Auction Item}), together with the necessary
edges, guards and invariants.

After that, as the next norm in the contract
is a permission over an action, we apply rule
(5), but taking into account that this time the
permission includes a time restriction t3 and it is
applied repetitively. Therefore, after performing the
permitted action for the first time, it is added to
the permission set of node n10 (V 10 = {}, S10 =
{Inadequate Item, V alid Information, Publish Item}
and P10 = {Auction Item,P lace Bid}).

Finally, we have in the contract an obligation over a
compound action in clause Payment Item with time re-
striction t4, where the actions are composed by means
of an OR-refinement, so we now apply the translation
rules (3) and (5). First, as the guard condition g1 is
considered for the rest of the contract, an urgent edge
from n12 to n13 is added with the guard g1 = false. In
n13 we keep the violation, satisfaction and permission
sets that we have in n12 and the automaton ends (but
in this case the contract is not breached). The other
two urgent edges going out of n12 correspond to the
choice of performing one of the obliged actions or the
other when the guard g1 = true is satisfied.

In Fig. 21 we can see that when it is chosen
the performance of the obliged action a6, the
automaton moves to state n14 where we keep the
same sets that in n12 and the invariant t4 ≤ 4
is included. Next, we have an edge from n14 to
n15 considering the performance of a6 by agent
buyer with the guard t4 ≤ 3 (and resetting the
clock t5 used to model the time restriction with
the same name), so in n15 the clause Payment Item
is added to the satisfaction set (V 15 = {}, S15 =
{Inadequate Item, V alid Information, Publish Item,

Payment Item} and P15 =
{Auction Item,P lace Bid}). We also have an
edge from n14 to n18 where the action a6 is not
executed with the guard t4 = 4, so in n18 the clause
Payment Item is added to the violation set and the
contract is breached:

• V 18 = {Payment Item}
• S18 = {Inadequate Item, V alid Information,
Publish Item}

• P18 = {Auction Item, P lace Bid}

If it is chosen the performance of the obliged action
a7 instead of a6, the automaton considered is anal-
ogous, but considering this time nodes n16 and n17

instead of nodes n14 and n15. After performing action
a7 we have an urgent edge from n15 to n19 and after
performing a6 we have another urgent edge from n17

to n19. In state n19 we keep the same sets that we have
in n15 and n17.

At this point we have in the contract an obligation
over an action with time restriction t5, so we apply
rule (5) again. Therefore, we add node n21 with the
following sets:

• V 21 = {}
• S21 = {Inadequate Item, V alid Information,
Publish Item, Payment Item, Send Item}

• P21 = {Auction Item, P lace Bid}

We also add the violation node n22 with the follow-
ing sets:

• V 22 = {Send Item}
• S22 = {Inadequate Item, V alid Information,
Publish Item, Payment Item}

• P22 = {Auction Item, P lace Bid}

However, in this case n22 is not a final node of
the automaton as reparation R1 has been defined
for the clause Send Item and we apply rule (6).
Therefore, considering n22 the starting node of the
reparation contract, as this contract consists of an
AND-refinement composing two different norms, the
transformation rule (8) is applied as in the case of
Check Item, defining a new automaton A2 to execute
in parallel with the main automaton A0. Now we
have on the one hand the obligation over an action
considered in automaton A0, and on the other hand
the permission over an action considered in automa-
ton A2. In both cases we take into account the time
restriction t6.

Concerning the obligation in A0, in the node n23 we
keep the same sets that in n22, and we add node n24

with the following sets:
• V 24 = {Send Item}
• S24 = {Inadequate Item, V alid Information,
Publish Item, Payment Item,Refund Buyer}

• P24 = {Auction Item, P lace Bid}

We also add the violation node n25 with the follow-
ing sets::

• V 25 = {Send Item,Refund Buyer}
• S25 = {Inadequate Item, V alid Information,
Publish Item, Payment Item}

• P25 = {Auction Item, P lace Bid}

In the automaton A2, where we consider the per-
mission, we have that nodes n0 and n1 have empty

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

violation, satisfaction and permission sets. In n2 the
clause Penalty Seller is added to the permission set
(V 2 = {}, S2 = {} and P2 = {Penalty Seller}),
but not in n3. We also have an edge from n1 to n3

considering that the permitted action is not executed
with the guard t6 = 8, so in n3 the clause Penalty Seller
is not added and the violation, satisfaction and per-
mission sets remains empty. In node n4 we keep the
sets of the previous node.

After that, we synchronize both automata. In node
n5 in A2 we keep the sets of n4, but in node n26 in
A0 we modify the sets of n24 by removing clause
Send Item from its violation set and adding to its
permission set the clause Penalty Seller if it has been
made effective:

• V 26 = {}
• S26 = {Inadequate Item, V alid Information,
Publish Item, Payment Item,Refund Buyer,
Penalty Seller}

• P26 = {Auction Item,P lace Bid, Penalty Seller?}

Finally, according to rule (8), we add an urgent edge
from n21 to n27 and another urgent edge from n26 to
n27, keeping in the node n27 the sets of the previous
node, that is, the sets of n21 or the sets of n26. This
is the main final node of the structure we have built,
where we have that the contract has been fulfilled and
the process ends.

5.3 OAP Validation and Verification

The automata we have obtained modelling the con-
tractually correct behaviours of the Online Auctioning
Process are implemented in the UPPAAL tool. At this
moment the validation of the contract can be done by
means of simulation, where we check that it behaves
as expected. For this purpose we use the simulator
included in the UPPAAL tool, which can be used in
three different ways:

• The system can be run manually, selecting the
transitions to be executed at each step.

• The system can run on its own and the transitions
to be performed are therefore selected randomly.

• The user can run a trace extracted from the
verifier of the UPPAAL tool. This is usually done
in the event of a failure when testing a property,
in order to analyze the trace that the verifier
provides us, which leads to the state at which
the property does not hold.

For the verification of the contract we check if the
process satisfies some properties of interest by using
the verifier of the UPPAAL tool. The query language
used for the specification of properties in this verifier
is a simplified version of CTL logic described in [14].

Next, we describe the results that have been ob-
tained in the verification of some of these properties:

• First, we want to check if it is possible to reach
a state in the process in which the item has
been sent to the buyer, that is, the obligation

Send Item has been satisfied. This property is
written as follows in the UPPAAL verifier:

E <> S[Send Item] == true
We obtain that this property is satisfied.

• Second, we want to check that the item is sent
to the buyer (Send Item) only if the payment
has been performed before (Payment Item). This
property is written as follows in the UPPAAL
verifier:

A[] S[Send Item] == true
imply S[Payment Item] == true

We obtain that this property is satisfied.
• Another property we want to check is that after

the item has been checked (node n7 of automaton
A0), if the auction service takes more than two
days to publish the auction of the item after
(t2 > 2), the clause Publish Item is violated. This
property is written as follows in the UPPAAL
verifier:

A0.n7 and t2 > 2−− >
V [Publish Item] == true

We obtain that this property is satisfied.
• Finally, we want to check that there exists a max-

imal path in which none of the main obligations
and prohibitions of the contract is violated, that
is, the process ends without any violation. This
property is written as follows in the UPPAAL
verifier:

E[] V [Inadequate Item] == false
and V [V alid Information] == false

and V [Publish Item] == false
and V [Payment Item] == false
and V [Send Item] == false

We obtain that this property is satisfied.
An alternative way of verification that can be per-

formed with the UPPAAL verifier is checking that
some undesirable behaviours never happen. This is
done by means of the verification of properties corre-
sponding to these behaviour, so we expect to obtain
that the properties are not satisfied.

Some of these properties that we have verified are
the following:

• We do not want the obligation of sending the item
to the buyer (Send Item) to be satisfied if the pay-
ment has not been performed (Payment Item).
This property is written as follows in the UP-
PAAL verifier:

S[Send Item] == true−− >
S[Payment Item] == false

We obtain that this property is not satisfied as
expected.

• We do not want the obligation of sending the
item to the buyer (Send Item) and the obli-
gation of refunding the payment to the buyer
(Refund Buyer) to be satisfied at the same time,
as the refund has to be done only if the item is
not sent. This property is written as follows in
the UPPAAL verifier:

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

E <> S[Send Item] == true
and S[Refund Buyer] == true

We obtain that this property is not satisfied as
expected.

• We do not want to have that for all the states the
obligation of paying the item (Payment Item) is
not satisfied or the obligation of refunding the
payment (Refund Buyer) is not satisfied, as we
expect to have a state where both obligations are
satisfied in the case of paying the item but not
getting it. This property is written as follows in
the UPPAAL verifier:

A[] S[Payment Item] == false
or S[Refund Buyer] == false

We obtain that this property is not satisfied as
expected.

• Another interesting property that at first glance
might appear to be satisfiable is that when
the obligation of paying the item is satisfied
(Payment Item), either the obligation of send-
ing the item (Send Item) or the obligation of
refunding the payment (Refund Buyer) must be
eventually satisfied. This property is written as
follows in the UPPAAL verifier:

S[Payment Item] == true−− >
S[Send Item] == true

or S[Refund Buyer] == true
We obtain that this property is not satisfied. To
see what is happening, we run the trace provided
by the verifier leading to the state at which the
property does not hold. In this trace we can see
that automaton A0 ends in node n25. In this node
both norms, the obligation of sending the item
and the obligation of refunding the payment,
have been violated. Therefore, it is correct the
result we have obtained for this property as it
is possible to reach a state where both norms are
violated and the contract is breached.

6 CASE STUDY: A DAPTIVE CRUISE CON-
TROL (ACC)
This case study is about the requirements engineering
process for the correct operation of an Adaptive Cruise
Control system. The aim of this system is the automatic
control of the speed of a car, in some cases taking into
account the distance to the vehicle ahead. Sensors are
used to measure this distance.

The description of the system operation that we
consider is the following: the system starts working
when it is inactive and the driver presses a button
to activate the system. It can be activated with the
current speed or with a previously stored speed.
After that, on the one hand the driver is forbidden
to deactivate the system for 10 milliseconds, just
in order to allow the system to fully perform all
the security checks before allowing deactivation. On
the other hand the system has to validate within 5

milliseconds if the speed is in the permissible range.
If the validation fails the system has 10 milliseconds to
notify that the speed is invalid, ending the activation
process, but if the validation does not fail the system
has to continue validating within 5 milliseconds that
no vehicle is within the minimum safety distance.
Again, if the validation fails the system has 10 mil-
liseconds to notify that the distance is invalid, ending
the activation process, but if the validation does not
fail the system has to finish the activation process.

At this moment there are two possibilities. If no
vehicle ahead is detected, the system just displays
within 5 milliseconds the activation speed that is
going to be followed. However, if a vehicle within the
minimum safety distance is detected, the system has 15
milliseconds to reduce the engine torque and actuate
the brakes in order to adapt the cruise speed to the
vehicle ahead speed, and after that the system displays
the speed adopted. Finally, after displaying the speed,
the driver is allowed to deactivate the system at any
moment.

In Table 2 we show a list of the obligations, permis-
sions and prohibitions that can be extracted from the
description of the system operation. In this table we
can see that there are seven clauses specifying real-
time constraints. In Clause 4 it is specified that after
activation (Clause 1 or Clause 2), the system has 5
milliseconds to validate the speed. In Clause 5 we
have that the system has 10 milliseconds to notify
invalid speed after speed validation (Clause 4). In
Clause 6 we have that the system has 5 milliseconds
to validate the distance after speed validation (Clause
4). In Clause 7 we have that the system has 10
milliseconds to notify invalid distance after distance
validation (Clause 6). Clause 8 and Clause 9 specify
that the system has 15 milliseconds to actuate brakes
and reduce engine torque after distance validation
(Clause 6). Finally, Clause 9 specifies that the system
has 5 milliseconds to display the adopted speed.

6.1 ACC C-O Diagrams

What follows we model this contract with C-O Dia-
grams taking into account the information provided
in Table 2. In these diagrams we use an to denote
the action corresponding to clause number n. We also
use t1 to denote the real-time constraint of Clause
3, t2 to denote the real-time constraint of Clause 5,
t3 to denote the real-time constraint of Clause 6,
t4 to denote the real-time constraint of Clause 7,
t5 to denote the real-time constraint of Clause 8, t6
to denote the real-time constraint of Clause 9, t7 to
denote the real-time constraint of Clause 10, and t8
to denote the real-time constraint of Clause 11. The
condition valid speed is denoted as g1, the condition
valid distance is denoted as g2, and the condition
vehicle ahead is denoted as g3,.

In Fig. 22 we show the top-level of the C-O

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

Clause Agent Modality Action Condition Time

1 Driver Permission
Can active the system with
the current speed

∅ ∅

2 Driver Permission
Can active the system with a
previously stored speed

∅ ∅

3 Driver Prohibition Deactivates the system ∅ Ten milliseconds after activation (t1)
4 Driver Permission Deactivates the system ∅ ∅
5 System Obligation Validates the car speed ∅ Five milisecons after activation (t2)

6 System Obligation Notifies invalid speed
Invalid speed
(¬g1)

Ten milliseconds after speed valida-
tion (t3)

7 System Obligation Validates distance
Valid speed
(g1)

Five milliseconds after speed valida-
tion (t4)

8 System Obligation Notifies invalid distance
g1 ∧ Invalid
distance (¬g2)

Ten milliseconds after distance vali-
dation (t5)

9 System Obligation Reduces engine torque
g1 ∧ g2 ∧ Vehi-
cle ahead (g3)

Fifteen milliseconds after distance
validation (t6)

10 System Obligation Actuates brakes
g1 ∧ g2 ∧ Vehi-
cle ahead (g3)

Fifteen milliseconds after distance
validation (t7)

11 System Obligation Displays speed
g1 ∧ Valid dis-
tance (g2)

Five milliseconds after setting speed
(t8)

TABLE 2
Norms of the Adaptive Cruise Control contract

Adaptive_Cruise_Control

Activate_System Deact_Validation

-

-

SEQ

Driver

P

a2a1

OR

Stored_SpeedCurrent_Speed

Deact_Forbidden Speed_Val_Process

AND

F

Driver

a3t1

-

Fig. 22. Top-level of the Adaptive Cruise Control

Speed_Val_Process

Speed_Validation Speed_Val_Result

-

-

SEQ

System

O

OR

Distance_Val_ProcessNotify_Inv_Speed

a5

O a6

System

t2

t3

g1g1 -

Fig. 23. Decomposition of clause Speed Val Process

Diagram we specify for the process, called Adap-
tive Cruise Control, starting the sequence from the
permissions specified in Clause 1 and Clause 2, that
have been called Activate System, and composing the
actions of activating the system with current speed
or with a previously stored speed by means of an
OR-refinement. After that, we have an AND-refinement
considering the prohibition of deactivating the system
specified in Clause 3, called Deact Forbidden and a
general clause called Speed Val Process which decom-
position is shown next.

The decomposition of clause Speed Val Process into
subclauses can be seen in Fig. 23, where a SEQ-
refinement is used in the decomposition. We have
on the left-hand side the specification of the obli-
gation specified in Clause 5, that has been called
Speed Validation, and on the right-hand side we have
an OR-refinement where we have that the obligation

Distance_Val_Process

Distance_Validation Distance_Val_Result

-

-

SEQ

System

O

OR

Check_Vehicle_AheadNotify_Inv_Distance

a7

O a8

System

t4

t5

g2g2

g1

-

Fig. 24. Decomposition of clause Dis-
tance Val Process

Check_Vehicle_Ahead

Vehicle_Ahead Display_Speed

-

-

SEQ

Deact_Permitted

t8

g2

g3

Reduce_Engine Actuate_Brakes

AND

O

System

a9t6
O a10t7

System

System Driver

a11
O a4

P

Fig. 25. Decomposition of clause
Check Vehicle Ahead

specified in Clause 6, called Notify Inv Speed, is ap-
plied if the speed is not valid, otherwise a general
clause called Distance Val Process is applied.

The decomposition of clause Distance Val Process
into subclauses is shown in Fig. 24, where a SEQ-
refinement is used in the decomposition. We have
on the left-hand side the specification of the obliga-
tion specified in Clause 7, that has been called Dis-
tance Validation, and on the right-hand side we have
an OR-refinement where we have that the obligation
specified in Clause 8, called Notify Inv Distance, is
applied if the distance is not valid, otherwise a general
clause called Check Vehicle Ahead is applied.

Finally, in Fig. 25 it is shown the decomposition of
clause Check Vehicle Ahead, where a SEQ-refinement is
used in the decomposition. In this case the sequence
starts with an AND-refinement considering the obli-
gation specified in Clause 9, that has been called

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

Fig. 26. Implementation of the ACC network of timed automata in UPPAAL

Reduce Engine, and the obligation specified in Clause
10, that has been called Actuate Brakes. These two
obligations are applied only if a vehicle ahead is
detected. After that, we have the specification of the
obligation specified in Clause 11, that has been called
Display Speed, and at the end of the sequence we have
the specification of the permission specified in Clause
4, that has been called Deact Permitted.

6.2 ACC Validation and Verification

Once again, we obtain the network of timed automata
corresponding to this contract by applying the trans-
formation rules of the C-O Diagrams semantics and
we implement these automata in the UPPAAL tool
for the validation and verification of the contract, as
in the OAP case study. The automata implemented in
this case in the UPPAAL tool can be seen in Fig. 26.

As in the OAP case study, the validation of the
contract can be done by means of simulation in the

UPPAAL Simulator and the verification of the con-
tract consists of checking if the process satisfies some
properties of interest in the UPPAAL verifier.

We describe now the results that have been ob-
tained in the verification of some of these properties:

• First, we want to check if it is possible to reach
a state in the process in which the system has
been eventually activated and the speed adopted
is displayed, that is, the obligation Display Speed
has been satisfied. This property is written as
follows in the UPPAAL verifier:

E <> S[Display Speed] == true
We obtain that this property is satisfied.

• Second, we want to check that if after the sys-
tem has validated the speed (node n10 of au-
tomaton A0) it takes more than five milliseconds
to validate the distance (t4 > 5), the clause
V alidate Distance is violated. This property is
written as follows in the UPPAAL verifier:

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

Adaptive_Cruise_Control

Activate_System Deact_Validation

-

-

SEQ

Driver

P

Deact_Permitted

Driver

a4
P

Fig. 27. Modification of the Adaptive Cruise Control

A0.n10 and t4 > 5−− >
V [V alidate Distance] == true

We obtain that this property is satisfied.
• Another property we want to check is if there

exists a maximal path in which none of the main
obligations and prohibitions of the contract is
violated, that is, the process ends without any
violation. This property is written as follows in
the UPPAAL verifier:

E[] V [Deact ACC] == false
and V [V alidate Speed] == false

and V [Notify Inv Speed] == false
and V [V alidate Distance] == false
and V [Notify Inv Dist] == false
and V [Reduce Engine] == false
and V [Actuate Brakes] == false
and V [Display Speed] == false

We obtain that this property is satisfied.
• Finally, we want to check that it is not allowed by

the contract specification reaching a state where
both, the permission and the prohibition of de-
activating the system are considered at the same
time. This property is written as follows in the
UPPAAL verifier:

A[] not(A0.n27 and A1.n1)
We obtain that this property is not satisfied.

At this point we have found out that one of the
desired properties is not satisfied by the contract
specification. Therefore, we have to go back to the C-
O Diagrams modelling the contract in order to solve
this problem. In this case the problem is that the
permission of deactivating the system can be enacted
after all the activation process before the prohibition
of deactivation has expired.

The problem can be solved by modifying the con-
tract in such a way that the permission of deacti-
vating the system is only enacted after the prohi-
bition of doing that has expired. The modification
proposed is shown in Fig. 27, where we have that
the Deact Permitted clause is now applied only after
the Deact V alidation process has finished (therefore
the Deact Permitted clause is not a subclause of
this process anymore). After this modification of the
contract specification, the transformation into a net-
work of timed automata and the implementation into
UPPAAL have been done again, and it is obtained
now that all the properties are satisfied.

7 RELATED WORK

The use of deontic logic for reasoning about contracts
is widely spread in the literature since it was proposed

in [16] for modelling communication processes. In [17]
Marjanovic and Milosevic present their initial ideas
for formal modelling of e-contracts based on deontic
constraints and verification of deontic consistency,
including temporal constraints. In [18] Governatori et
al. go a step further providing a mechanism to check
whether business processes are compliant with busi-
ness contracts. They introduce the logic FCL to reason
about the contracts, being based again on deontic
logic. The work by Lomuscio et al. provides another
methodology to check whether service compositions
are compliant with e-contracts. In [19] they present
an approach using WS-BPEL to specify both, all the
possible behaviours of each service and the con-
tractually correct behaviours, translating these spec-
ifications into automata supported by the MCMAS
model checker to verify the behaviours automatically,
whereas in [20] they consider a service composition in
OWL-S and check with MCMAS if the composition
fulfils some contract properties written in a formal
language based on epistemic and deontic logic. In
both works we have that the specification of real-
time constraints is not allowed because they are not
supported by MCMAS and the deontic norms are
restricted to obligations.

The approach followed by C-O Diagrams is inspired
by the formal language CL [8]. In this language a
contract is also expressed as a composition of obliga-
tions, permissions and prohibitions over actions, and
the way of specifying reparations is the same that in
our model. However, CL does not support neither the
specification of agents nor timing constraints natively,
so they have to be encoded in the definition of the
actions. In [21] Solaiman et al. show how relevant
parts of contracts can be described by means of Finite
State Machines (FSMs), using these FSMs to check the
correctness of the contract specification, detecting any
undesirable ambiguity, whereas our approach seeks to
check if the contract specified satisfies some properties
of interest by using the verifier of the UPPAAL tool.
In [22] Desai et al. also automate reasoning about the
correctness the contract specification, but in this case
representing contracts formally as a set of commit-
ments.

None of the previous works provides a visual
model for the definition of contracts. However, there
are several works that define a meta-model for the
specification of e-contracts which purpose is their
enactment or enforcement. In [23] Chiu et al. present a
meta-model for e-contract templates written in UML,
where a template consists of a set of contract clauses
of three different types: obligations, permissions and
prohibitions. These clauses are later mapped into
ECA rules for contract enforcement purposes, but
the templates do not include any kind of repara-
tion or recovery associated to the clauses. In [24]
Krishna et al. proposed another meta-model based on
entity-relationship diagrams that they use to gener-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

ate workflows supporting e-contract enactment. This
meta-model includes clauses, activities, parties and
the possibility of specifying exceptional behaviour,
but this approach is not based on deontic logic and
says nothing about including real-time aspects na-
tively. Another approach can be found in [25], where
Rouached et al. propose a contract layered model for
modelling and monitoring e-contracts. It consists of a
business entities layer, a business actions layer, and
a business rules layer. These three layers specify the
parties, the actions and the clauses of the contract re-
spectively, including the conditions under which these
clauses are executed. However, real-time restrictions
are not included and the specification of the clauses
follows an operational approach, not a deontic ap-
proach. Finally, in [26] Heckel and Lohmann propose
to visualize contracts by graph transformation rules
over UML data models, but this approach is closer to
implementation than ours and it is focused on testing.

8 CONCLUSIONS

In this work we have developed a formal semantics
for C-O Diagrams based on timed automata extended
with an ordering of states and edges in order to
represent the different deontic modalities. We have
also seen how these automata can be implemented
in UPPAAL in order to model-check the contract
specification, and we have applied it to two different
case studies.

We plan to work on several other case studies
from different application domains to further explore
the applicability of our approach. This includes legal
contracts, regulatory texts, and electronic contracts
(e.g., contracts in the context of SOA). Finally, an
interesting research direction is to use GF (the Gram-
matical Framework) [27] to relate C-O Diagrams with
natural language. This might be done by means of
using controlled natural languages as an intermediate
language and by encoding C-O Diagrams into GF as
has been recently done for the language CL [28].

ACKNOWLEDGMENTS

Partially supported by the Spanish government (co
financed by FEDER founds) with the project TIN2009-
14312-C02-02 and the JCCLM regional project PEII09-
0232-7745. The first author is supported by the Euro-
pean Social Fund and the JCCLM.

REFERENCES

[1] B. Meyer, “Design by Contract,” Interactive Software Engi-
neering Inc., Tech. Rep. TR-EI-12/CO, 1986.

[2] J. Hatcliff, G. Leavens, k. Leino, P. Mller, and M. Parkin-
son, “Behavioral Interface Specification Languages,” School of
EECS, University of Central Florida, Tech. Rep. CS-TR-09-01,
2009.

[3] “ebXML: Electronic Business using eXtensible Markup Lan-
guage,” www.ebxml.org.

[4] “WSLA: Web Service Level Agreements,”
www.research.ibm.com/wsla/.

[5] “Web Services Agreement Specification (WS-
Agreement),” https://forge.gridforum.org/projects/graap-
wg/document/WS-AgreementSpecification/en/7.

[6] J. C. Okika and A. P. Ravn, “Classification of soa contract
specification languages,” in 2008 IEEE International Conference
on Web Services (ICWS’08). IEEE Computer Society, 2008, pp.
433–440.

[7] P. McNamara, “Deontic Logic,” in Gabbay, D.M., Woods, J., eds.:
Handbook of the History of Logic. North-Holland Publishing,
2006, vol. 7, pp. 197–289.

[8] C. Prisacariu and G. Schneider, “CL: An Action-based Logic
for Reasoning about Contracts,” in 16th Workshop on Logic,
Language, Information and Computation (WOLLIC’09), ser. LNCS,
vol. 5514. Springer, June 2009, pp. 335–349.

[9] E. Martı́nez, Dı́az, G., M. E. Cambronero, and G. Schneider, “A
Model for Visual Specification of e-Contracts,” in The 7th IEEE
International Conference on Services Computing (IEEE SCC’10),
2010, pp. 1–8.

[10] E. Martı́nez, Dı́az, G., and M. E. Cambronero, “Contractually
Compliant Service Compositions,” ICSOC 2011 - The Ninth
International Conference on Service Oriented Computing, pp. 636–
644, 2011.

[11] K. G. Larsen, Z. Pettersson, and Y. Wang, “UPPAAL in a Nut-
shell,” STTT: International Journal on Software Tools for Technlogy
Transfer, vol. 1, no. 1–2, pp. 134–152, 1997.

[12] R. Alur and D. Dill, “Automata For Modeling Real-Time
Systems.” in ICALP, 1990, pp. 322–335.

[13] ——, “A Theory of Timed Automata,” Theoretical Computer
Science, vol. 126(2), pp. 183–235, 1994.

[14] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on
Uppaal,” Formal Methods for the Design of Real-Time Systems,
no. 3185, pp. 200–236, 2004.

[15] G. Decker, “Design and Analysis of Process Choreographies,”
Ph.D. dissertation, Hasso Plattner Institute, Uiversity of Post-
dam, 2009.

[16] F. Dignum and H. Weigand, “Modelling Communication be-
tween Cooperative Systems,” Proceedings of Advanced Informa-
tion Systems Engineering (CAISE’95), pp. 140–153, 1995.

[17] O. Marjanovic and Z. Milosevic, “Towards formal modeling
of e-Contracts,” Proceedings of 5th IEEE International Enterprise
Distributed Object Computing Conference, pp. 59–68, 2001.

[18] G. Governatori, Z. Milosevic, and S. Sadiq, “Compliance
checking between business processes and business contracts,”
Proceedings of the 10th IEEE Conference on Enterprise Distributed
Object Computing, pp. 221–232, 2006.

[19] A. Lomuscio, H. Qu, and M. Solanki, “Towards verifying
contract regulated service composition,” Proceedings of IEEE
International Conference on Web Services (ICWS 2008), pp. 254–
261, 2008.

[20] ——, “Towards verifying compliance in agent-based web ser-
vice compositions,” Proceedings of 7th on Autonomous Agents
and Multiagent Systems, pp. 265–272, 2008.

[21] E. Solaiman, C. Molina-Jimenez, and S. Shrivastava, “Model
Checking Correctness Properties of Electronic Contracts,” Pro-
ceedings of International Conference on Service Oriented Computing
(ICSOC03), pp. 303–318, 2003.

[22] N. Desai, N. C. Narendra, and M. P. Singh, “Checking correct-
ness of business contracts via commitments,” Proceedings of
7th on Autonomous Agents and Multiagent Systems, pp. 787–794,
2008.

[23] D. Chiu, S. Cheung, and S. Till, “A Three-Layer Architecture
for E-Contract Enforcement in an E-Service Environment,”
Proceedings of the 36th Hawaii International Conference on System
Sciences (HICSS-36), pp. 74–83, 2003.

[24] P. Krishna, K. Karlapalem, and A. Dani, “From Contract to E-
Contracts: Modeling and Enactment,” Information Technology
and Management, vol. 6, no. 4, pp. 363–387, 2005.

[25] M. Rouached, O. Perrin, and C. Godart, “A Contract Lay-
ered Architecture for Regulating Cross-Organisational Busi-
ness Processes,” Proceedings of Third International Conference on
Business Process Management, pp. 410–415, 2005.

[26] R. Heckel and R. Lohmann, “Towards verifying compliance in
agent-based web service compositions,” Proceedings of Interna-
tional Workshop on Test and Analysis of Component Based Systems,
pp. 145–156, 2004.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

[27] A. Ranta, Grammatical Framework: Programming with Multilin-
gual Grammars. Stanford: CSLI Publications, 2011, iSBN-10:
1-57586-626-9 (Paper), 1-57586-627-7 (Cloth).

[28] S. M. Montazeri, N. Roy, and G. Schneider, “From Contracts
in Structured English to CL Specifications,” in FLACOS’11,
ser. EPTCS, vol. 68, 2011, pp. 55–69. [Online]. Available:
http://dx.doi.org/10.4204/EPTCS.68.6

APPENDIX A
C-O Diagrams TRANSFORMATION RULES

In this Appendix we provide the formal definition of
the C-O Diagrams transformation rules that have been
informally described in Section 3.

Definition 8: (C-O Diagrams Transformation Rules)

(1) An atomic action in a C-O Diagram, that is,
(ǫ, name, ǫ, ǫ, a, ǫ) corresponds to the timed au-
tomaton A = (NA, n0A , EA, IA), where:
• NA = {ainit, aend}.
• n0A = ainit.
• EA = {ainit

a
−→ aend}.

• IA = ∅.

(2) A compound action in a C-O Diagram where
an AND-refinement is used to compose actions,
that is, (ǫ, name, ǫ, ǫ, C1 AndC2 And . . . AndCn, ǫ)
corresponds to the cartesian product of the au-
tomata corresponding to each one of the subcon-
tracts. Let us consider A,B, . . . , Z the automata
corresponding to the subcontracts C1, C2, . . . , Cn

(the actions specified in these subcontracts can
be atomic actions or other compound actions).
The resulting automaton AND corresponds to
the cartesian product of these automata, that is,
AND = A×B × . . .× Z.

(3) A compound action in a C-O Diagram where an
OR-refinement is used to compose actions, that
is, (ǫ, name, ǫ, ǫ, C1 OrC2 Or . . . Or Cn, ǫ) corre-
sponds to a new automaton in which the au-
tomata corresponding to each one of the subcon-
tracts is considered as an alternative. Let us con-
sider A,B, . . . , Z the automata corresponding to
the subcontracts C1, C2, . . . , Cn (the actions speci-
fied in these subcontracts can be atomic actions or
other compound actions). The resulting automa-
ton OR preserves the structure of the automata
we are composing but adding a new initial node
ORinit and connecting this node by means of
urgent edges performing no action to the initial
nodes of A,B, . . . , Z (Ainit, Binit, . . . , Zinit). It is
also added a new ending node ORend and ur-
gent edges performing no action from the ending
nodes of A,B, . . . , Z (Aend, Bend, . . . , Zend) to this
new ending node. Let A = (NA, n0A , EA, IA), B =
(NB, n0B , EB , IB), . . . , Z = (NZ , n0Z , EZ , IZ).
The resulting automaton is therefore OR =
(NOR, n0OR

, EOR, IOR), where:
• NOR = NA ∪NB ∪ . . . ∪NZ ∪ {ORinit, ORend}.
• n0OR

= ORinit.
• EOR = EA ∪ EB ∪ . . . ∪ EZ ∪
{ORinit −→u Ainit, ORinit −→u Binit, . . . ,

ORinit −→u Zinit} ∪ {Aend −→u ORend,

Bend −→u ORend, . . . , Zend −→u ORend}.
• IOR = IA ∪ IB ∪ . . . ∪ IZ .

(4) A compound action in a C-O Diagram where a
SEQ-refinement is used to compose actions, that
is, (ǫ, name, ǫ, ǫ, C1 Seq C2 Seq . . . Seq Cn, ǫ) corre-
sponds to a new automaton in which the au-
tomata corresponding to each one of the subcon-
tracts are connected in sequence. Let us consider
A,B, . . . , Z the automata corresponding to the
subcontracts C1, C2, . . . , Cn (the actions specified
in these subcontracts can be atomic actions or
other compound actions). The resulting automa-
ton SEQ preserves the structure of the automata
we are composing, adding no extra nodes. We
only connect with an urgent edge performing
no action the ending node of each automaton
in the sequence (Aend, Bend, . . . , Yend) with the
initial node of the next automaton in the sequence
(Binit, Cinit, . . . , Zinit). This rule is not applied
in the cases of Ainit (as there is not previous
ending node to connect) and Zend (as there is
not following initial node to connect). Let A =
(NA, n0A , EA, IA),B = (NB , n0B , EB , IB), . . . , Z =
(NZ , n0Z , EZ , IZ). The resulting automaton is
therefore SEQ = (NSEQ, n0SEQ

, ESEQ, ISEQ),
where:
• NSEQ = NA ∪NB ∪ . . . ∪NZ .
• n0SEQ

= Ainit.
• ESEQ = EA ∪ EB ∪ . . . ∪ EZ ∪
{Aend −→u Binit, Bend −→u Cinit, . . . ,

Yend −→u Zinit}.
• ISEQ = IA ∪ IB ∪ . . . ∪ IZ .

(5) The application of an obligation, a permission
or a prohibition over an action in a C-O Dia-
gram, i.e., (agent, name, g, tr, O/P/F (C), R) cor-
responds to an automaton where the obliga-
tion/prohibition of performing the action spec-
ified in the subcontract C can be skipped, ful-
filled or violated, whereas the permission of per-
forming the action can be skipped, made ef-
fective or not made effective. Let us consider
A = (NA, n0A , EA, IA) the automaton correspond-
ing to C, being Ainit the initial node and Aend

the ending node. The resulting automaton D(A),
where D ∈ {O,P, F}, preserves the structure of
the automaton A but adding a new ending node
Atime including the obligation over the action in
its violation set, the prohibition over the action in
its satisfaction set or nothing if a permission over
the action is considered. If guard condition g 6= ǫ,
we add another ending node Askip where the
violation, satisfaction and permission sets are not
modified. We also include the obligation over the
action in the satisfaction set of Aend, the prohibi-
tion over the action in the violation set of Aend, or
the permission over the action in the permission
set of Aend. An invariant x ≤ t2 + 1 is added
to each node of A except Aend and each edge

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 20

• ND(A) = NA ∪ {Atime, Askip}.
• n0D(A)

= Ainit.

• ED(A) = {Ainit
¬g

−→u Askip} ∪

n
g1,agent(a)
−−−−−−−→ n′ |n

a
−→ n′ ∈ EA and n′ 6= Aend,

n
g1,agent(a),tname
−−−−−−−−−−−−→ n′ |n

a
−→ n′ ∈ EA

and n′ = Aend, n
g2−→ Atime |n ∈ NA − {Aend} if D = O

n
g1,agent(a)
−−−−−−−→ n′ |n

a
−→ n′ ∈ EA and n′ 6= Aend,

n
g1,agent(a),tname
−−−−−−−−−−−−→ n′ |n

a
−→ n′ ∈ EA and n′ = Aend,

n
g2−→ Atime |n ∈ NA − {Aend} if D = P

n
g1,agent(a)
−−−−−−−→ n′ |n

a
−→ n′ ∈ EA,

n
g2,tname−−−−−−→ Atime |n ∈ NA − {Aend} if D = F

• ID(A) = IA ∪ {I(n) ≡ x ≤ t2 + 1 |n ∈ NA − {Aend}}.

Result of transformation rule (5)

performing one of the actions in this automaton
is guarded with (x ≥ t1) and (x ≤ t2) and action
performed by agent. New edges guarded with
x = t2 + 1 and no action performed are added
from each node of A except Aend to the new node
Atime and, if guard condition g 6= ǫ, an urgent
edge from Ainit to Askip is also added guarded
with the guard condition of the clause negated
(¬g). Finally, if tname ∈ C, all the edges reaching
Aend reset tname in the cases of obligation and
permission, whereas all the edges reaching Atime

reset tname in the case of prohibition. Considering
the more complex case, where g 6= ǫ and tname ∈
C, and having that g1 ≡ (x ≥ t1) and (x ≤ t2)
and g2 ≡ x = t2 + 1, the resulting automaton
is therefore D(A) = (ND(A), n0D(A)

, ED(A), ID(A)),
which elements are described in next page.

(6) An obligation or prohibition in a C-O Diagram
specifying a contract reparation R 6= ǫ corre-
sponds to the obligation automaton O(A) or the
prohibition automaton F (A) together with the
reparation automaton R, considering the node
with name in its violation (Avio) set as the ini-
tial node of the reparation automaton (Rinit).
In the ending node of the reparation automa-
ton (Rend) name is removed from the violation
set, as the violation has been repaired. In this
node we also have that the satisfaction set and
the permission set are different from the ones
we have in the initial node of the reparation
because we have to include in the satisfaction
set all the obligations and prohibitions satis-
fied in the reparation contract, and in the per-
mission set all the permissions that have been
made effective in the reparation contract. Let us
consider D(A) = (ND(A), n0D(A)

, ED(A), ID(A)),
where D ∈ {O,F}, and R = (NR, n0R , ER, IR).
The resulting automaton is therefore D(A)R =
(ND(A)R , n0D(A)R

, ED(A)R , ID(A)R), where:

• ND(A)R = ND(A) ∪NR − {Rinit}.
• n0D(A)R

= Ainit.

• ED(A)R = ED(A) ∪ {n
g,a,r
−→s n′ |n

g,a,r
−→s n′ ∈ ER and

n 6= Rinit}∪
{Avio

g,a,r
−→s n′ |n

g,a,r
−→s n′ ∈ ER and n = Rinit}.

• ID(A)R = ID(A) − {I(Avio)} ∪ {I(n) |n ∈ NR −
{Rinit}} ∪ {I(Avio) ≡ I(Rinit)}.

(7) Let D(A)R = (ND(A)R , n0D(A)R
, ED(A)R , ID(A)R),

where D ∈ {O,P, F}, be the automaton corre-
sponding to an obligation, a prohibition or a per-
mission in a C-O Diagram, specifying a repara-
tion R 6= ǫ in the two first cases. The correspond-
ing automaton with only one ending node, that
we call Afinal and preserves the violation, satis-
faction and permission sets of the previous node,
is D(A)′R = (ND(A)′

R
, n0D(A)′

R

, ED(A)′
R
, ID(A)′

R
),

where:
• ND(A)′

R
= ND(A)R ∪ {Afinal}.

• n0
D(A)′

R

= n0D(A)R
.

• ED(A)′
R

= ED(A)R ∪ {Askip −→u Afinal} ∪

Aend −→u Afinal, Rend −→u Afinal if D = O

Aend −→u Afinal, Atime −→u Afinal if D = P

Atime −→u Afinal, Rend −→u Afinal if D = F

• ID(A)′
R
= ID(A)R .

(8) If several norms are composed by an AND-
refinement, that is, we have specified the diagram
(ǫ, name, g, tr, C1 AndC2 And . . . AndCn, ǫ), their
composition corresponds to a network of
automata in which we consider all the norms
we are composing in parallel. Let us consider
C1, C2, . . . , Cn the automata corresponding to
the norms we are composing. The resulting
network of automata preserves the structure
of the automata we are composing, adding to
each one of them the additional nodes and
edges necessary for synchronization (these
nodes are called Cinit and Cfinal in the first
automaton, Cisyn and Cisyn′ , i = 1, . . . , n − 1 in
the other automata). Before its initial node, each
automaton synchronizes with the other automata
and it synchronizes again after its final node by
means of urgent channels (m1,m2, . . . ,mn−1). In
the first automaton we add another node Cskip if
guard condition of the parent clause g 6= ǫ and an
urgent edge from Cinit to this new node guarded
with the guard condition negated (¬g). In the
final node of the first automaton the violation,
satisfaction and permission sets are the union of
the sets resulting in each one of the automata

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 21

• NC∗i = NCi ∪

Cinit, Cfinal, Cskip if i = 1
Cisyn, Cisyn′ , Ci−1syn, Ci−1syn′ if i = 2, . . . , n− 1
Ci−1syn, Ci−1syn′ if i = n

• n0C∗i
=

{

Cinit if i = 1
Ci−1syn, Ci−1syn′ if i = 2, . . . , n

• EC∗i = ECi ∪

Cinit
¬g

−→u Cskip, Cinit
mi!−→ Ciinit,

Cifinal
mi!−→ Cfinal if i = 1

Ci−1syn
mi−1?−→ Cisyn, Cisyn′

mi−1?−→ Ci−1syn′ ,

Cisyn
mi!−→ Ciinit, Cifinal

mi!−→ Cisyn′ if i = 2, . . . , n− 1

Ci−1syn
mi−1?−→ Ciinit, Cifinal

mi−1?−→ Cfinal if i = n

• IC∗i = ICi ∪ {I(n) ≡ x ≤ t2 + 1 |n ∈ NCi − {Cifinal}}.

Result of transformation rule (8)

running in parallel, so we have that Vfinal =
V 1 ∪ V 2 ∪ . . . ∪ V n, Sfinal = S1 ∪ S2 ∪ . . . ∪ Sn
and Pfinal = P1 ∪ P2 ∪ . . . ∪ Pn. If time
restriction of the parent clause tr 6= ǫ, we
consider this additional time restriction in all the
composed automata together with their own time
restrictions. Let C1 = (NC1

, n0C1
, EC1

, IC1
), C2 =

(NC2
, n0C2

, EC2
, IC2

), . . . , Cn =
(NCn

, n0Cn
, ECn

, ICn
). Considering the case

where g 6= ǫ and tr 6= ǫ, and having
that EC1

∗, EC2
∗, . . . , ECn

∗ are the sets
of edges considering time restriction tr
together with their own time restriction, the
resulting network of automata is therefore
C∗i = (NC∗i

, n0C∗i
, EC∗i

, IC∗i
), i = 1, . . . , n, which

elements are described in next page.

(9) If several norms are composed by an OR-
refinement, that is, we have specified the
diagram (ǫ, name, g, tr, C1 OrC2 Or . . . Or Cn, ǫ),
their composition corresponds to an automaton
in which the automata corresponding to each
one of the norms is considered as an alternative.
Let us consider C1, C2, . . . , Cn the automata
corresponding to the norms we are composing.
The resulting automaton OR∗ preserves the
structure of the automata we are composing,
adding two nodes called Cinit and Cfinal. We
define an urgent edge performing no action
for each one of the norms we are composing
connecting Cinit with the initial node of the
automaton corresponding to the norm and
we also define an urgent edge performing
no action for each one of the norm we are
composing connecting the final node of its
automaton with Cfinal. We add another node
Cskip if guard condition of the parent clause
g 6= ǫ and an urgent edge from Cinit to this
new node guarded with the guard condition
negated (¬g). In the final node of this new
structure we keep the violation, satisfaction and
permission sets of the previous final node, so
we have that Vfinal = V 1|V 2| . . . |V n, Sfinal
= S1|S2| . . . |Sn and Pfinal = P1|P2| . . . |Pn. If
time restriction of the parent clause tr 6= ǫ, we
consider this additional time restriction in all the

composed automata together with their own time
restrictions. Let C1 = (NC1

, n0C1
, EC1

, IC1
), C2 =

(NC2
, n0C2

, EC2
, IC2

), . . . , Cn =
(NCn

, n0Cn
, ECn

, ICn
). Considering the case

where g 6= ǫ and tr 6= ǫ, and having that
EC1

∗, EC2
∗, . . . , ECn

∗ are the sets of edges
considering time restriction tr together with their
own time restriction, the resulting automaton
is therefore OR∗ = (NOR∗, n0OR∗

, EOR∗, IOR∗),
where:

• NOR∗ = NC1∪NC2∪. . .∪NCn∪{Cinit, Cfinal, Cskip}.
• n0OR∗

= C1init.
• EOR∗ = EC1 ∗ ∪EC2 ∗ ∪ . . . ∪ ECn ∗
∪{Cinit −→u C1init, Cinit −→u C2init, . . . ,

Cinit −→u Cninit} ∪

{C1final −→u Cfinal, C2final −→u Cfinal, . . . ,

Cnfinal −→u Cfinal} ∪ {Cinit
¬g

−→u Cskip}.
• IOR∗ = IC1 ∪ {I(n) ≡ x ≤ t2 + 1 |n ∈ NC1 −
{C1final}} ∪ IC2 ∪ {I(n) ≡ x ≤ t2 + 1 |n ∈ NC2 −
{C2final}} ∪ . . . ∪ ICn ∪ {I(n) ≡ x ≤ t2 + 1 |n ∈
NCn − {Cnfinal}}.

(10) If several norms are composed by a SEQ-
refinement, that is, we have specified the diagram
(ǫ, name, g, tr, C1 Seq C2 Seq . . . Seq Cn, ǫ), their
composition corresponds to an automaton in
which the automata corresponding to each
one of the norms are connected in sequence.
Let us consider C1, C2, . . . , Cn the automata
corresponding to the norms we are composing.
The resulting automaton SEQ∗ preserves the
structure of the automata we are composing,
adding just one extra node Cskip if guard
condition of the parent clause g 6= ǫ and an
urgent edge from C1init to this new node
guarded with the guard condition negated (¬g).
We connect with an urgent edge performing
no action the ending node of each automaton
in the sequence (C1final, C2final, . . . , Cn−1final)
with the initial node of the next automaton
(C2init, C3init . . . , Cninit). This rule is not applied
in the cases of C1init (as there is not previous
ending node to connect) and Cnfinal (as there
is not following initial node to connect). In
the initial node of each one of the composed
automata we preserve the violation, satisfaction
and permission sets of the previous final node.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 22

If time restriction of the parent clause tr 6= ǫ, we
consider this additional time restriction in all the
composed automata together with their own time
restrictions. Let C1 = (NC1

, n0C1
, EC1

, IC1
), C2 =

(NC2
, n0C2

, EC2
, IC2

), . . . , Cn =
(NCn

, n0Cn
, ECn

, ICn
). Considering the case

where g 6= ǫ and tr 6= ǫ, and having that
EC1

∗, EC2
∗, . . . , ECn

∗ are the sets of edges
considering time restriction tr together with their
own time restriction, the resulting automaton is
SEQ∗ = (NSEQ∗, n0SEQ∗

, ESEQ∗, ISEQ∗), where:
• NSEQ∗ = NC1 ∪NC2 ∪ . . . ∪NCn ∪ {Cskip}.
• n0SEQ∗

= C1init.
• ESEQ∗ = EC1 ∗ ∪EC2 ∗ ∪ . . . ∪ ECn ∗
∪{C1init

¬g
−→u Cskip, C1final −→u C2init,

C2final −→u C3init, . . . , Cn−1final −→u Cninit}.
• ISEQ∗ = IC1 ∪ {I(n) ≡ x ≤ t2 + 1 |n ∈ NC1 −
{C1final}} ∪ IC2 ∪ {I(n) ≡ x ≤ t2 + 1 |n ∈ NC2 −
{C2final}} ∪ . . . ∪ ICn ∪ {I(n) ≡ x ≤ t2 + 1 |n ∈
NCn − {Cnfinal}}. 2

