
University of Castilla-La Mancha

A publication of the

Computing Systems Department

Metric Data Structures Supported by Heterogeneous Systems

Metric Data Structures Supported

by
Heterogeneous Systems

by

Roberto Uribe-Paredes, Enrique Arias,
Jośe L. Śanchez, Diego Cazorla

Technical Report #DIAB-13-05-2 May, 2013.-

DEPARTAMENTO DE SISTEMAS INFORḾATICOS
ESCUELA SUPERIOR DE INGENIEŔIA INFORMÁTICA

UNIVERSIDAD DE CASTILLA-LA MANCHA
Campus Universitario s/n
Albacete - 02071 - Spain

Phone +34.967.599200, Fax +34.967.599224

Metric Data Structures Supported by Heterogeneous
Systems

May 14, 2013

Abstract

In real applications, when dealing with high volume of data, it is necessary the

use of parallel platforms in order to obtain results in a reasonable time. Nowadays,

GPU/MultiGPU devices are widely used to get this reasonable time at a low price.The

GPU/MultiGPU are managed by a CPU/core/multicore host. That is why these kinds of

systems are called heterogeneous systems. However, in most cases the CPU/core/multicore

is idle when the GPU/MultiGPU devices are processing. As a consequence,the theoret-

ical peak performance of the underlying architecture decreases and,of course, the term

heterogeneous platform becomes more a conventional term than a real term.

In this paper, we have carried out a real heterogeneous implementation focusing

on similarity search. Similarity search is becoming a field of increasing interest because

these kinds of methods can be applied to different areas in science and engineering, such

as pattern recognition, information retrieval, etc. This search is carried out over metric

indexes that allow to decrease the number of distance evaluations during thesearch

process, improving the efficiency of the overall process. Our heterogeneous platform

consists of a 8 core processor and 4 GPUs. Then, our algorithms exploitthe computa-

tional resources executing at the same time on cores and on the GPUs. The scheduling

is carried out by OpenMP considering dynamic scheduling. In order to fixthe best

chunk or block size of the queries to be processed by each processingelement, different

approaches have been considered.

3

features vector

structure

metric

query image

query results

extraction

feature

insertion
query results

Content−Based Image Retrieval (CBIR Model)

image data

collection

Figure 1:Similarity Search applied on Content-Based Image Retrieval System.

Keywords: Similarity search, metric spaces, range queries, GPU platforms, multi-

core platforms.

1 Introduction

In the last decade, the search of similar objects in a large collection of stored objects

in a metric database has become a most interesting problem. This kind of searchcan

be found in different applications such as voice and image recognition, data mining,

plagiarism and many others. A typical query for these applications is the range search

which consists in obtaining all the objects that are at some given distance from the

consulted object. Figure 1 represents a typical content-based image retrieval scheme.

The increasing size of databases and the emergence of new data types create the

need to process large volumes of data. In order to be able to deal with this amount of

data and get results in a reasonable time, the use of parallel platforms is necessary. For

example, when a query (search a word) is made to a retrieval information system in a

database (dictionary), the response time has to be short in order to accomplish the user

requirements.

4

Nowadays, a typical server site is comprised by a cluster of multicores and multiG-

PUs [26, 25]. In most applications, data is distributed among the different processors in

a cluster, and is processed in a multicore/multiGPU platform. Therefore, the algorithms

have to be optimized to deal with the underlying heterogeneous architecture.Moreover,

the algorithms have to be able to be executed on cores and GPUs at the same time in

order to obtain the best performance.

In this paper the authors present two different implementations consideringtwo dif-

ferent scenarios. The first one takes into account that the queries are completely pro-

cessed in a unique kernel. Under this scenario more objects of the database can be allo-

cated to the global memory of the GPU. Evidently, the consequence is that the timespent

in data transfer is increased and more calls to the unique kernel are needed. Then, the

second scenario corresponds to a block-oriented implementation transferring a chunk of

queries at a time and processing it in the unique kernel, reducing the time spent in data

transfer and calls to the kernel. However, less objects of the database can be allocated in

the global memory of the device. Moreover, a bigger data structure is required to store

the results of the queries.

This paper is structured as follows. First, the following subsections introduce a

description of the GPU architecture and the programming model, then the concept of

similarity search in metric spaces is introduced and finally related work is presented.

Thinking on the GPU implementation, Section 2 compares well-known data structures

pivot-based against a generic structure in the sequential implementation in order to

achieve a suitable structure for GPU platforms, presenting the experimentalplatform,

experimental results and discussion. From the previous starting point, the twoheteroge-

neous implementations considering the two scenarios previously described are detailed

in Sections 4.1 and 4.2. Finally, in Section 5 the conclusions and future work are out-

lined.

5

1.1 Graphics Processing Units

Graphics Processing Units (GPUs) are considered as serious challengers for high-performance

computing solutions because of its suitability for massively parallel processing. Their

high number of computing cores and high-speed memory access have facilitated their

application to many real-world applications such as bioinformatics, computational fi-

nance, numerical computing, image/video processing, engineering simulations, physics

and chemistry, etc.

In order to adapt to the available hardware and obtain good performanceby ex-

ploiting the full potential of the GPU, the main manufacturers, such as NVIDIAand

AMD/ATI, proposed new languages or extensions for the most commonly-used high-

level programming languages. NVIDIA proposed CUDA, a software platform for pro-

gramming massively parallel high-performance. The NVIDIAs CUDA Programming

Model [1] considers the GPU as a computational device capable to executea high num-

ber of parallel threads. CUDA includes C/C++ software development tools, function

libraries, and a hardware abstraction mechanism that hides the GPU hardware to the

developers.

To take advantage of the GPU computational capacity, hundreds of threads are

launched simultaneously to execution. In order to hide memory access latency, an ef-

ficient usage of the memory hierarchy must be achieved. A CUDA kernel executes a

sequential code in a large number of threads in parallel. The threads are organized into

grids of thread blocks. Threads within a block can work together efficiently exchanging

data via a local shared memory and synchronize low-latency execution through syn-

chronization barriers (where threads in a block are suspended until they all reach the

synchronization point). By contrast, the threads of different blocks in the same grid can

only coordinate their execution through high-latency accesses to global memory (the

graphic board memory). The programmer arranges parallelism by declaring the number

of thread blocks, the number of threads per thread block and their distribution, subject

to the program constraints.

6

1.2 Similarity Search in Metric Spaces

Similarity is modeled in many interesting cases through metric spaces, and the search

of similar objects through range search or nearest neighbors. A metric space(X,d) is

a setX and a distance functiond : X
2→ R, so that∀x,y,z ∈ X fulfills the properties of

positiveness (d(x,y) ≥ 0and d(x,y) = 0 i f f x = y), symmetry (d(x,y) = d(y,x)) and

triangle inequality (d(x,y)+d(y,z)≥ (d(x,z)).

In a given metric space(X,d) and a finite data setY⊆ X, a series of queries can be

made. The basic query is therange query (x,r), a query beingx ∈ X and a ranger ∈ R.

The range query aroundx with ranger (or radiusr) is the set of objectsy ∈ Y such that

d(x,y)≤ r. A second type of query that can be built using the range query isk nearest

neighbors (kNN), the query beingx ∈ X and objectk. k nearest neighbors tox are a

subsetA of objectsY, such that if|A|= k and an objecty ∈ A, there is no objectz 6∈ A

such thatd(z,x)≤ d(y,x).

There are several metric data structures (or metric access methods) aimed to mini-

mize the amount of distance evaluations made to solve the query and thereby reduce the

processing time. Searching methods for metric spaces are mainly based on dividing the

space using the distance to one or more selected objects. As they do not useparticular

characteristics of the application, these methods work with any type of objects[8].

Some structures are based in clustering and others in pivots. The clustering-based

structures divide the space into areas, where each area has a so-called centre. Some data

is stored in each area, which allows easy discarding the whole area by justcomparing the

query with its centre. Some clustering-based indexes are BST [15], GHT [21], M-Tree

[9], GNAT [6], EGNAT [19] and many others.

In the pivots-based methods, a set of pivots is selected and the distancesbetween

the pivots and database elements are precalculated. When a query is made,the query

distance to each pivot is calculated and the triangle inequality is used to discard the can-

didates. Its objective is to filter objects during a request through the use ofa triangular

inequality, without really measuring the distance between the object under request and

the discarded object. Some pivots-based indexes are LAESA [18], FQTand its variants

7

[3], Spaghettis and its variants CMBY99, FQA [7], SSS-Index [20] andothers.

Array-type structures implement these concepts directly. The differenceamong dif-

ferent array-type structures lies on extra structures used to reduce the computational

cost to obtain the number of candidates keeping invariable the evaluation of distances.

Although there are also tree-type structures, however, array-type are the best to be im-

plemented on GPU-based platforms [24].

More details on current metric structures can be found in [8, 14].

1.3 Related Work

Currently, there are many parallel platforms for the implementation of metric structures.

In this context, basic research has focused on technologies for distributed memory appli-

cations, using high level libraries for message passing such as MPI or PVM, and shared

memory, using the language or directives of OpenMP [13].

Some studies have focused on different structures parallelized on distributed mem-

ory platforms using MPI or BSP. In these cases, the aim was not only the parallelization

of the algorithms, but also the balanced distribution of data [27, 2, 12].

In terms of shared memory, some studies analyze data distribution on multicore

nodes. Other works propose combining multithread queries processing totally asyn-

chronous with massively synchronous, depending on traffic [11].

Most of the previous and current works developed in this area are carried out con-

sidering classical distributed or shared memory platforms, but few studies exist focus

on GPU-based platforms. Some solutions considered till now developed on GPUs are

based on kNN queries without using data structures. This means that GPUsare basi-

cally applied to exploit its parallelism only for exhaustive search [16, 10].In general, in

the previous works the parallelization is applied in two stages. The first one consists in

building the distance matrix, and the second one consists in sorting this distancematrix

in order to obtain the final result.

A particular variant of the above proposed algorithms is presented in [4] where the

search is structured into three steps. In the first step each block solves aquery. Each

8

thread keeps a heap where it stores thekNN nearest elements processed by this thread.

Secondly, a reduction operation is applied to obtain a final heap. Finally, thefirst k

elements of this final heap are taken as a result of the query.

In [4, 5] a GPU version of the structure List of Clusters is presented. However, in

this case, a single kernel is used and no restrictions about the size of the memory are

made, i.e., they consider they can store in the memory of the device the whole structure,

the database, the pivots and all the queries.

In [24] metric structures on a GPU were used and the results were compared with

sequential versions, considering 2 and 3 kernels working on the GPU.

2 Preparing a Pivot-based Metric Data Structure

In metric spaces literature different data structures have been considered and classified

into two categories: clustering-based methods and pivot-based methods. InSection 1.2

several references have been taken into account.

In this work, clustering-based methods as EGNAT or GHT have not been considered

due to the fact that the tree-type structures do not suit well into the GPU architecture.

Thus, we only have considered array-type data structures as SSS-Index, Spaghettis and

LAESA [23].

SSS-Index, Spaghettis and LAESA can be considered as a bidimensionalarray, that

is, a distance table. These kinds of structures are appropriate to be mapped into a GPU

architecture, benefiting the execution of simple instructions by several threads over dif-

ferent data and avoiding jumps on the device memory. In the case of the tree-type

structures, mapping the structure on the GPU device implies jumps along the structure

reducing the performance. This is the reason why we assess that tree-type structures do

not suit well into the GPU architecture.

In this work, the authors considered a Generic Metric Structure (GMS) that does not

take into account a pivot selection, or, the pivots are randomly selected,as opposite to

SSS-Index and LAESA data structure. Besides, Spaghettis data structure needs to be

9

reordered before the search process. In GMS the structure does not need to be ordered,

and then it is possible to obtain better performance on a GPU due to the fact that the

ordering process is computationally expensive in this kind of device.

Therefore, this section tries to put in context different array-type datastructures

before selecting one of them thinking of the GPU implementations.

2.1 Pivot-based and Array-type Data Structures

In the literature it is possible to find different array-type metric data structures. In this

section, we describe those taken into account in this work.

In particular, the considered metric data structures are:

Spaghettis: It is an array-type structure based on pivots and does not assume any

pivot selection method. However, each entry in the array, that represents distances be-

tween an element in the database and the pivots, is sorted with respect to this distance,

obtaining a reduction on the execution time by means of a binary search. In thiswork,

the array is sorted considering only the first pivot.

SSS-Index: SSS-Index (Sparse Spatial Selection) [20] is basically the generic struc-

ture varying the way in which the pivots are selected. The selection methods will be

introduced later.

LAESA: Like SSS-Index, it is a structure similar to the generic one, but the selection

of pivots is carried out using a method calledMaximun Sum of Distances (MSD).

The choice of these metric structures is motivated because they are representative of

this field of knowledge, and we have considered structures based on pivots and array-

type.

With respect to the choice of the pivot selection method, we have considered the

following:

Randomly: As the name suggests, this method consists in selecting randomly the set

of pivots.

Sparse Spatial Selection (SSS): Sparse Spatial Selection [20] is a method to se-

lect a dynamic set of pivots or centres distributed in the space. Let(X,d) be a met-

10

ric spaceU ⊂ X and M the largest distance between all pairs of objects, i. e.M =

max{d(x,y)/x,y ∈ U}. Initially, the set of pivots contains the first element of the col-

lection. After that, an elementxi ∈ U is selected as a pivot if and only if the distance

between it and the rest of selected pivots is greater than or equal toM ∗α , beingα a

constant whose optimum values are close to 0.4 [20].

Maximun Sum of Distances (MSD): MSD is used inLAESA (Linear Approximating

Search Algorithm) [18, 17]. The underlying idea is to select pivots considering that the

distance between them is always the maximum. Starting with a base pivot arbitrarily

selected, the distance between the objects and the selected pivot is calculated, and then

the new base pivot to be selected is the one located to the maximum distance. The

distances are added in a vector to calculate the next base pivot. This is an iterative

process that ends when the required number of base pivots is obtained.

In general terms, Spaghettis metric data structure, SSS-Index and LAESA, could

be considered as a generic bidimensional array data structure. The difference between

these structures is the way of obtaining the pivots or the way in which the structure is

stored.

From this initial analysis, we have extracted some conclusions that provide us some

clues about what kind of metric structure could be suitable to be implemented in a

GPU-based platform. Thus, in next section we introduce a structure calledGeneric

Metric Structure as an alternative to the previously presented. The idea is tosimplify

the structures and the processes thinking of the GPU architecture and programming

model in order to obtain the best performance.

2.2 Generic Metric Structure

Considering that we are going to work on a GPU-based hardware platform, a pivot-based

Generic Metric Structure (GMS) has been considered [23]. During the construction of

this metric structure, a set of pivotsp1, ..., pk, which may or may not belong to the

database, are selected. A GMS can be seen then as a table of distances between the

pivots and all the elements of the database, i. e., each cell stores the distance d(yi, p j),

11

whereyi is an element of the database andpi the pivots.

For this generic metric data structure, the searching process, given a query q and a

ranger, is carried out according to the following steps:

1. The distance betweenq and all the pivotsp1, . . . , pk is calculated in order to obtain

k intervals in the form[a1,b1], ..., [ak,bk], whereai = d(pi,q) - r andbi = d(pi,q)

+ r.

2. The objects in the intersection of all intervals are considered as candidates to the

queryq.

3. For each candidate objecty, the distanced(q,y) is calculated, and ifd(q,y) ≤ r,

then the objecty is a solution to the query.

Details of the process are shown in Algorithm 1.

Algorithm 1 Generic Metric Index: Search Algorithm.
rangesearch(queryq, ranger)

1: {Let Y⊆ X be the database}
2: {Let P be set of pivotsp1, . . . , pk ∈ X}
3: {Let D be the table of distances associatedq}
4: {Let S be Metric Index}
5: for all pi ∈ P do
6: Di← d(q, pi)
7: end for
8: for all yi ∈ Y do
9: discarded← f alse

10: for all p j ∈ P do
11: if D j− r > Si j ||D j + r < Si j then
12: discarded← true
13: break;
14: end if
15: end for
16: if !discarded then
17: if d(yi,q)≤ r then
18: add to result
19: end if
20: end if
21: end for

Figure 2 represents a GMS built using 4 pivots. In this example, objects 2,13,15 are

candidates and their real distance to the query must be calculated.

12

�������
�������
�������
�������

�������
�������
�������
�������

����
����
����

����
����
����

�������
�������
�������

�������
�������
�������

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

���
���
���

���
���
���

DATA BASE

Object 17

Object 1

Object 16

Object 15

Object 14

Object 13

Object 12

Object 11

Object 10

Object 2

Object 3

Object 4

Object 5

Object 6

Object 7

Object 8

Object 9

1 6 10 5

5 0 7 36

7 5 6 28

6 7 0 45

8 7 7 87

4 6 6 95

7 7 8 108

14 13 14 515

9 9 7 610

9 79 6 7

7 6 88 13

98 6 9 14

2 62 128

0 5 7 111

2 10 10 1611

7 6 7 156

2 6 6 172

link3 421

Figure 2:Searching on GMS: Structure is built using 4 pivots. For a queryq with distances to pivots
d(q, pi) = {8,7,4,6} and a search ranger = 2, define the intervals{(6,10),(5,9),(2,6),(4,8)} over
which the searching is going to be carried out. The cells within the intervals aremarked with dark
gray. The cells hatched with lines indicate candidates (objects 2,13,15).

Considering the metric data structures introduced till this moment and the algorithm

described here, in next subsections we introduce the case studies as well as the experi-

mental results and a discussion about them, in order to obtain some valuable conclusions

for the GPU implementation.

2.3 Experimental Environment

As case studies, we have considered two datasets: a subset of the Spanish dictionary and

a color histograms database, obtained from the Metric Spaces Library (http://www.sisap.org).

The Spanish dictionary is a space of words composed of 86,061 words and the edit dis-

tance was used. Given two words, this distance is defined as the minimum number

of insertions, deletions or substitutions of characters needed to make one of the words

equal to the other. For each query, a range search between 1 and 4 was considered. The

second space is a set of 112,682 color histograms (112-dimensional vectors) from an

image database. Any quadratic form can be used as a distance, thus we chose Euclidean

distance as the simplest meaningful alternative. The radius used was that allowing to

retrieve 0.01, 0.1 and 1% from the dataset.

13

For both databases we create the metric data structure with 90% of the datasetran-

domly chosen, and reserve the rest 10% for queries. We select 32 pivots to built the

generic structure because this amount of pivots gives the best results [23]. Pivots are

also randomly selected. The time spent during the construction of the structure is not

computed, this is considered as a preprocessing time.

This experimental framework was chosen because it is the most common environ-

ment used to evaluate the kinds of algorithms presented in this paper.

The hardware platform used is a 2 Quadcore Xeon E5530 at 2.4GHz and48GB

of main memory with 4 Nvidia Tesla C1060 240 cores at 1.3GHz and 4 GB of global

memory, using CUDA SDK v3.2 [1]. The compilation has been done using gcc 4.3.4

compiler and OpenMP library.

2.4 Discussion

We have considered this variety of structures in order to determine, experimentally, if the

cost in the searching process compensates the complexity of the implementation,taking

into account that the decision taken here will condition the future implementation on a

GPU-based platform.

The relevant features considered in this work are:

Execution time. The execution time is a key factor in order to determine the best

implementation. In the literature lot of papers are found talking about evaluation of

distances [20, 19], but they do not consider execution time (floating point operations

and I/O operations), memory accesses, etc.

Distance evaluations. In general, the reduction on evaluation of distances has been

considered as the main goal of the new structures design, and evidently, ithas a direct

impact on the execution time. However, the high processing capacity of current com-

putational platforms implies that distance evaluation is not always the operationwith

a higher computational cost. For instance, in GPU-based platforms, sortingoperation

14

affects to the execution time more than the evaluation of distances.

In order to compare all the structures under the same conditions, the numberof piv-

ots were previously selected according to the SSS-Index criteria, varying the parameter

α . The reason was that for SSS-Index the pivots cannot be stablished a priori because

they are dynamically generated. In this case, the number of pivots taken intoaccount

are: 26, 44, 82, 328, 665, 1362 for the dictionary case study and 30,35, 44, 57, 74, 119,

155, 244 for the histogram case study. Moreover, for GMS, Spaghettisand LAESA data

structures 32 and 500 pivots were added for the dictionary case study and 32 pivots the

for histogram case study, with the aim of having a more complete study of the behavior

of the different methods. In the case of SSS-Index, it is not possible to deal with this

number of pivots because there is not anyα that provides them.

Figures 3 and 4 show the results for the sequential implementation related to the

selected methods previously described. The figures only show the rangebetween 32

and 500 pivots for dictionary case study and between 32 and 119 for thehistogram case

study. Also, Figure 3 shows the results separately for search range 1,2, 3 and 4, for the

dictionary case study. In general, the idea of considering an interval orseparating by

search range is due to the fact that we want to focus on the relevant results and then to

make easier their interpretation.

In general, the best execution time corresponds to the Spaghettis data structure when

low search range is considered, independently of the number of pivots taken into ac-

count. The reason is that the binary search process used to find the exact range for the

first pivot, optimizes the rest of the searching process. GMS data structure is the second

one in terms of performance. Finally, the SSS and MSD methods have the worst behav-

ior, being the random pivot selection method the best choice for these case studies. In

this point, it is important to mention that searching in metric spaces depends on thereal

and intrinsic dimension of the space, and then all the methods could not have the same

behavior. This is the case of SSS and LAESA, where better results were expected.

As the range or radius increases, the behavior of the Spaghettis-basedmethod is

degraded because the number of discarded objects with the first pivot islower than

15

 0

 1000

 2000

 3000

 4000

 5000

3
2

8
2

3
2
8

5
0
0

3
2

8
2

3
2
8

5
0
0

4
4

8
2

3
2
8

5
0
0

3
2

8
2

3
2
8

5
0
0

D
is

ta
n
c
e
 e

v
a
lu

a
ti
o
n
s
 (

a
v
g
.
b
y
 q

u
e
ry

)

Number of pivots

GMS Spaghettis

SSS

MSD−Laesa

r=1
r=2

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

3
2

8
2

3
2
8

5
0
0

3
2

8
2

3
2
8

5
0
0

4
4

8
2

3
2
8

5
0
0

3
2

8
2

3
2
8

5
0
0

T
im

e
 (

s
e
c
.)

Number of pivots

GMS Spaghettis SSS MSD−Laesa

r=1
r=2

 0

 10000

 20000

 30000

 40000

 50000

3
2

8
2

3
2
8

5
0
0

3
2

8
2

3
2
8

5
0
0

4
4

8
2

3
2
8

5
0
0

3
2

8
2

3
2
8

5
0
0

D
is

ta
n
c
e
 e

v
a
lu

a
ti
o
n
s
 (

a
v
g
.
b
y
 q

u
e
ry

)

Number of pivots

GMS

Spaghettis

SSS

MSD−Laesa
r=3
r=4

 200

 400

 600

 800

 1000

 1200

 1400
3
2

8
2

3
2
8

5
0
0

3
2

8
2

3
2
8

5
0
0

4
4

8
2

3
2
8

5
0
0

3
2

8
2

3
2
8

5
0
0

T
im

e
 (

s
e
c
.)

Number of pivots

GMS Spaghettis SSS MSD−Laesa

r=3
r=4

Figure 3: Calculations of average distance per query (left column) and total execution time (right
column) for the Spanish dictionary case study considering the following datastructures: GMS, SSS-
Index, Spaghettis, MSD-Laesa.

considering low range. In this situation, the binary search becomes a problem because

it increases the execution time. For instance, in the histogram case study the percentage

of discarded objects is just 50%. However, in the dictionary case study thepercentage

of discarded objects decreases from 38.5% for a low range till 3% for upper ranges,

considering just a pivot.

Tables 1 and 2 show, in detail, the execution time (in seconds) of the best cases

depending on the range or on the data retrieved percentage, respectively. In these tables

several modifications of the generic structure are considered. In thesemodifications the

pivots were not selected randomly but following the pivots selection methodsused by

the other structures. Thus, first we randomly or using SSS get a subsetof pivots from the

database and then MSD is applied to get the number of pivots for the best performance

case (32 or 44 depending on the range). Only modifications of the structure with a good

performance are considered in the tables (e.g. “MSDx on SSSy” cases are not included

16

 0

 5000

 10000

 15000

 20000

 25000

 30000

3
2

7
4

1
1
9

3
2

7
4

1
1
9

3
5

7
4

1
1
9

3
2

7
4

1
1
9

D
is

ta
n
c
e
 e

v
a
lu

a
ti
o
n
s
 (

a
v
e
ra

g
e
 b

y
 q

u
e
ry

)

Numbers of pivots

GMS
Spaghettis

SSS

SMD−Laesa
Database retrieved

0,01%
0,10%
1,00%

 0

 100

 200

 300

 400

 500

3
2

7
4

1
1
9

3
2

7
4

1
1
9

3
5

7
4

1
1
9

3
2

7
4

1
1
9

T
im

e
 (

s
e
c
.)

Number of pivots

GMS Spaghettis

SSS

MSD−Laesa
Database retrieved

0.01%
0.10%
1.00%

Figure 4: Calculation of average distance per query (left column) and total execution time (rigth
column) for the histogram of colors case study considering the following data structures: GMS, SSS-
Index, Spaghettis, MSD-Laesa.

Index 1 2 3 4

Spaghettis 32 15.45 90.66 375.80 699.58

MSD 32 on GMS 665 22.51 89.86 382.35 703.83

MSD-Laesa 32 22.46 98.05 395.62 729.82

MSD 32 on GMS 1362 23.05 90.15 380.10 710.81

GMS 32 23.08 95.92 378.41 700.94

MSD 32 on SSS 1362 24.83 96.33 398.35 738.19

MSD 32 on SSS 665 25.07 92.33 394.45 747.89

MSD 44 on GMS 1362 25.78 76.64 344.74 705.13

SSS-Index 44 (α = 0.55) 29.25 88.75 406.80 835.76

Table 1:Execution time for the best methods for the Spanish dictionary case study (column: range;
row: data structure)

in color histograms because they have a poor performance).

According to the experimental results, it is not possible to select a metric structure

as the best one, because it depends on the space distribution of the database. In fact,

in this context we expect that SSS-Index provides better results than GMS. Thus, two

structures are candidates to be eligible as the best: Spaghettis and GMS. However from

the point of view of a future GPU implementation the best one is GMS due to:

1. By using a generic structure it is not necessary to apply a binary search like

Spaghettis does. Binary search operation is very expensive in a GPU-based plat-

form in comparison with the evaluation of distances.

2. Thanks to the combination of a generic structure and MSD pivot selection, it is

17

Index 0.01 0.1 1.0

Spaghettis 32 21.00 54.90 182.87

GMS 32 37.77 69.89 190.74

MSD 32 on GMS 119 39.28 71.85 190.26

MSD 32 on GMS 1014 46.55 96.10 246.91

SSS-Index 57 (α = 0.6) 55.77 95.91 249.85

MSD-Laesa 35 91.33 199.75 406.99

Table 2: Execution time for the best methods for the color histograms case study (column: data
retrieved percentage; row: data structure)

possible to reduce the number of pivots till satisfying the memory constraints in-

herent to the GPU-based platforms, obtaining at the same time a slight improve-

ment in execution time. However, this benefit depends on the space distribution.

For instance, good results were obtained in words space by applying random se-

lection of pivots and after that applying MSD, but no benefits were obtained in

color histograms (see Tables 1 and 2).

To sum up, using the generic structure we will take benefits in terms of execution

time and, in addition, the code is more simple.

Having that in mind, next sections present different Heterogeneous GPU-based ver-

sions of the similarity search algorithm.

3 Range Search on Heterogeneous Platforms

In this section we describe the proposed algorithm and discuss specific details related

to the different considered implementations on the selected hardware platform. Differ-

ences between implementations are given by the type of computing elements that are

used in each of the implementations, i.e., CPU cores and/or GPUs. We have considered

three cases: one CPU core and one GPU, several CPU cores, and several CPU cores and

several GPUs.

There are some features in the implementations that are common to all:

• Data structures. The main data structures are used in all implementations, i.e.,

dataset, queries, GMS, and pivots. Maybe, each implementation can use different

18

auxiliary structures, and it is also possible that some of these structures are handled

in a different way and from different levels in the system memory hierarchy.

• Processing. Obviously, all the essential computing operations are performed in

all the implementations. However, to fully solve all the queries some extra ac-

tions must be considered in some implementations, in particular those using GPU

devices. For instance, in these cases data structures must be transferred from

host/CPU main memory to device/GPU global memory.

• Pre-processing. Generic Metric Structure is built in a preprocessing stage and is

loaded during the program execution. That is, in this stage the number of pivots

are defined, the pivots are randomly selected and the structure is generated.

Particular details of each implementation are included below.

3.1 Multicore implementation

In order to use the capability of our CPU with 8 cores, to carry out a performance evalua-

tion on this platform and to compare the results between platforms (GPU and multi-core

CPU), we have implemented a multicore-based version of the same algorithm.

We have implemented the three parts described in Section 2.2 which are the most

expensive computationally as we have explained above. Mainly, this implementation

consists in distributing the queries to all available cores using OpenMP pragmas. In

particular, we have used the#pragma omp parallel for directive inOpenMP.

3.2 GPU implementation

Unlike previous works [22], where 2 and 3 kernels were considered,in this case all the

operations solving a given query are included into one kernel. The queries are distributed

to all available GPUs, and each GPU solves the queries one by one, i.e. there exists a

loop such that each iteration completely solves a query by means a kernel call.

Before calling the kernel to be executed in the GPU, main data structures aretrans-

ferred from host main memory to GPU global memory: dataset, GMS, and pivots. Some

19

auxiliary structures are also located into global memory, and will be used forstoring

temporal and final results.

After that, the kernel code corresponds to the following main actions:

• The queryq to be solved is directly transferred to the GPU shared memory by

using the CUDA parameter-passing mechanism.

• Then, in order to solve the query, as many threads as the number of objectsin the

dataset are launched to execution. A few of them compute the distance betweenq

and the pivotspi, and the resulting distancesd(q, pi) are maintained into the shared

memory in each multiprocessor because they will be used by all the threads (step

1 of basic algorithm).

• In the next step, all the threads determine whether the elements of the database are

or not candidates for the queryq. Each thread checks out only one element (Steps

2 and 3 of basic algorithm).

• Finally, for each candidate element the corresponding thread determines whether

that element is a valid solution for the queryq.

Finally, results are transferred from GPU global memory to CPU main memory.

Figure 5 shows the algorithm operation inside the GPU, in particular the steps 2

and 3 of the basic algorithm described in Section 2.2. The data distribution into shared

memory and the accesses carried out by the threads to the data and structures can be

observed.

3.2.1 Memory access latency

When hundreds or thousands of threads are simultaneously running, there is enormous

pressure on the memory system, which can increase in a significant amount the average

memory latency, and as a consequence decrease the performance. In order to reduce that

latency, some actions can be taken into consideration, e.g. to exploit the lower shared

20

8 7 4 6

d(q , P)i

515 14 13 14

5 6 7 0 4

6 5 0 7 3

8 7 5 6 2

0 1 6 5 1

Object 5

Object 4

Object 3

Object 2

Object 1

p kp 1 p 2

q 1
q 2
q 3
q 4
q 5

q

6 N2 2 6 Object N

Global Memory

GPU

DBGMS

BLOCK
Threads

B
lo

ck
 s

iz
e

access
2

2
3

q i

3

access

Shared Memory

Q Pivots (P)

MAX_QUERIES_GPU

1
11

T
h

re
ad

s
Figure 5:Inside of a GPU. Steps 2 and 3 from the basic algorithm.

memory latency or promote coalesced access to global memory1.

Our kernel places the most used data into shared memory, and transforms the input

data structures for achieving coalesced memory access. Since each thread needs to

access an entire row of the GMS structure, and all the threads attempt to simultaneously

access their respective rows, the GMS structure is transformed applyingthe transposed

operation previously to be transferred from host main memory to GPU globalmemory.

In this way, when threads in a given warp access to GMS structure, they will find the

data in consecutive positions, allowing coalesced accesses to global memory.

3.3 Results and Discussion

In order to get a broader view on the use of a multicore and a GPU-based platform,

Figure 6 shows absolute execution times for the following implementations: sequential,

multicore (with 8 cores), and GPU using shared memory.

As expected, graphics in Figure 6 show a considerable decrease in the execution time

when comparing the sequential version with both the multicore and the GPU versions.

For the color histograms space, the behavior of the different versions shows the same

1Global memory accesses by threads of a warp (of a half warp fordevices of compute capability 1.x) are

coalesced by the device into as few as one transaction when certain access requirements are met.

21

 0

 100

 200

 300

 400

 500

 600

 700

1 2 3 4

T
im

e
(s

ec
.)

Range Search

sequential
8 cores
1 GPU

(a) Execution time for the Spanish dictionary case study.

 0

 50

 100

 150

 200

 250

0.01 0.1 1

T
im

e
(s

ec
.)

Percentage retrieved from the database

sequential
8 cores
1 GPU

(b) Execution time for the color histograms case study.

Figure 6:Execution time for sequential, multicore and GPU implementation.

differences when the search radius increases. In this case, the version with 8 cores is

always better than the one with one GPU. For the space of words, such regularity in the

behavior of the structures is lost. For ranges greater than 2 the GPU platform versions

have a better performance than those with 8 cores. This difference is basically due to

the characteristics of the space of words.

The number of elements we can discard may depend on the search range. For ex-

ample, with 16 pivots and a ranger = 1 in the space of words, more than 99.9% of

elements of the database can be discarded; however, withr = 4, this percentage de-

creases to 39.7%. Nevertheless, in the color histograms space these values range from

97% to 90.1% for the minor and major radius respectively, i. e., the structure has a more

stable behaviour in this space. The reason of this different behaviour isthe nature of

the distances: in the first case we use a discrete distance while in the secondcase the

distance is continuous. We can conclude that, in order to discard the maximum amount

of objects in the space of words, it is important to use all the pivots for high ranges.

Finally, we can say that for the space of words the number of threads available to re-

solve a query is very important, therefore, for high ranges the performance of the GPU

implementation is better than the 8 cores implementation.

22

4 Heterogeneous implementations of the Similar-

ity Search Algorithm

Nowadays, GPU/MultiGPU devices are widely used to get reasonable execution time

at a low price. The GPU/MultiGPU are managed by the CPU/core/multicore. This

is why these systems are called heterogeneous systems. However, in most cases the

CPU/core/multicore are idle when the GPU/MultiGPU devices are processing. As a

consequence, the theoretical peak performance of the underlying architecture decreases,

and of course, the term heterogeneous platform becomes more a conventional term than

a real term.

In this paper the authors have developed two different heterogeneousimplemen-

tations considering two different scenarios. The first one takes into account that the

queries are completely processed in a unique kernel. Under this scenariomore objects

of the database can be allocated to the global memory of the GPU. Evidently, thecon-

sequence is that the time spent in data transfer is penalized and more calls to theunique

kernel are needed. The second scenario corresponds to a block-oriented implementation

transferring a chunk of queries at a time and processing it in the unique kernel, reduc-

ing the time spent in data transfer and calls to the kernel. However, less objects of the

database can be allocated to the global memory of the device. Moreover, a bigger data

structure is required to store the results of the queries.

In general, a query is entirely resolved by a single device. The scheme used dis-

tributes queries on all the cores, including the GPUs core administrators.

The cores share the structures and data from the host’s RAM. This information is

also replicated to every GPU devices. The iterations are gotten out using the#pragma

omp parallel for directive in OpenMP. The number of iterations assigned to each

core and how queries are distributed over the set of cores depend on the type of schedul-

ing defined in the#pragma directive. Four scheduling schemes can be considered for

this#pragma.

1. Dynamic: Some of the iterations are allocated to a smaller number of threads.

23

Pivots

Data Structure

Database

q
i

GPU 1

GPU 2

GPU 3

GPU 4

Data
Structure

Database

Pivots

Cores

Host

Host Memory
Memory
Shared

Global

GPU Platform

Memory

q

Secondary
Memory

(Transfers)

GPU core administrator

direct resolution by the core

solutions q
i

Queries

d(q,p)j

Figure 7:Heterogeneous System Scheme.

Once a particular thread finishes its allocated iteration, it gets another one from

the iterations that are left. The parameterchunkdefines the number of contiguous

iterations that are allocated to a thread at a time.

2. Guided: Large chunks of contiguous iterations are allocated to each thread dy-

namically. But the chunk is not constant, it decreases exponentially with each

successive allocation to a minimum size specified in the parameter chunk.

3. Runtime: Scheduling decision is deferred until runtime by variableOMP_SCHEDULE.

4. Static: In this case, all the threads are allocated iterations before they execute the

loop. The iterations are divided among threads equally by default. However, it is

possible to allocate a fixed number of contiguous iterations to a particular thread

by using the parameter chunk.

In general, when the different iterations in the loop may take different time to execute

it is more convenient to usedynamic scheduling. Thus, this is the scheduling scheme

used in this work.

Figure 7 shows the operation diagram of the heterogeneous system, including GPU

core administrator. In the scheme it is possible to see the data transfer. In thisdiagram

there are 8 cores and 4 GPUs.

24

4.1 Heterogeneous implementation: one query - one kernel

In this section we introduce an implementation that considers the comments in previous

section, related to the scheduling scheme, but where the kernel processes one query at a

time. The reason to consider this scenario is that under these circumstancesmore objects

of the database can be allocated to the global memory of the GPU. However, the time

spent in data transfer increases and more calls to the unique kernel are performed. On

the other hand, this implementation allows us to obtain a first approach to the behavior

of the GMS structure for this heterogeneous scheme applying different chunk size.

4.1.1 Execution time

Figures 8 and 9 show the results obtained when using a multicore implementation

against an implementation following the heterogeneous scheme usingdynamic schedul-

ing. In the graphs, the X axis represents the percentage of iterations assigned to each

core (equivalent to the number of queries), except for 1q that means 1query. For a better

visualization of the results, search ranges have been separated into individual graphics.

On the other hand, in the legend YZ, Y means number of cores and Z number of GPUs.

Then, 80 means 8 cores and 0 GPUs, meanwhile 81 means 8 cores, but oneof them

manages 1 GPU.

In these figures, it can be observed that the implementation following the hetero-

geneous scheme has better performance in terms of execution time than the multicore

version, except for 12,5% where all resources carried out the same number of iterations.

In this case, the GPU is underused.

The advantage of using all the available resources in 81 is shown in Figure10 where

we can see that the heterogeneous version gets the best performance.

In particular, we can observe that the performance obtained by 81 evolves in parallel

to the performance obtained by using just 1 GPU. The gap between them is given by the

constant speed-up of using 8 cores.

Figures 11 and 12 show the results for the heterogeneous system using from 1 to 4

GPUs. In general, the behavior of 84 is the best for all cases, especially for low number

25

 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4
 4.2
 4.4

1q 2.5
5 7.5

10 12.5

T
im

e
(s

ec
.)

Percentage of iterations assigned

(r=1)

80
81

 8

 10

 12

 14

 16

 18

 20

 22

1q 2.5
5 7.5

10 12.5

Percentage of iterations assigned

(r=2)

80
81

 10

 20

 30

 40

 50

 60

 70

 80

1q 2.5
5 7.5

10 12.5

Percentage of iterations assigned

(r=3)

80
81

 20

 40

 60

 80

 100

 120

 140

 160

1q 2.5
5 7.5

10 12.5
Percentage of iterations assigned

(r=4)

80
81

Figure 8: Execution time depending on the chunk size when using dynamic scheduling (space of
words).

 4

 4.5

 5

 5.5

 6

 6.5

 7

1q 1 2.5
5 7.5

10 12.5

T
im

e
(s

ec
.)

Percentage of iterations assigned

(0.01%)

80
81

 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18

1q 1 2.5
5 7.5

10 12.5

Percentage of iterations assigned

(0.1%)

80
81

 15

 20

 25

 30

 35

 40

 45

 50

 55

1q 1 2.5
5 7.5

10 12.5

Percentage of iterations assigned

(1.0%)

80
81

Figure 9:Execution time depending on the chunk size when using dynamic scheduling (color histro-
grams).

 0

 5

 10

 15

 20

 25

 30

1 2 3 4

S
pe

ed
 u

p

Range search

8cores
1GPU

8cores+1GPU

(a) Spanish dictionary.

 0

 2

 4

 6

 8

 10

 12

 14

0.01 0.1 1

S
pe

ed
 u

p

Percentage retrieved from the database

8cores
1GPU

8cores+1GPU

(b) Color histograms.

Figure 10:Speed-ups for heterogeneous system.

26

 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4
 4.2
 4.4

1q 2.5
5 7.5

10 12.5

T
im

e
(s

ec
.)

Percentage of iterations assigned

(r=1)

81
82
83
84

 4

 6

 8

 10

 12

 14

 16

 18

1q 2.5
5 7.5

10 12.5

Percentage of iterations assigned

(r=2)

81
82
83
84

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

1q 2.5
5 7.5

10 12.5

Percentage of iterations assigned

(r=3)

81
82
83
84

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

1q 2.5
5 7.5

10 12.5
Percentage of iterations assigned

(r=4)

81
82
83
84

Figure 11:Adding GPUs to the heterogeneous scheme changing cores by GPUs. Spanish dictionary
case study.

 3

 3.5

 4

 4.5

 5

 5.5

 6

1q 1 2.5
5 7.5

10 12.5

T
im

e
(s

ec
.)

Percentage of iterations assigned

(0.01%)

81
82
83
84

 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14

1q 1 2.5
5 7.5

10 12.5

Percentage of iterations assigned

(0.1%)

81
82
83
84

 5

 10

 15

 20

 25

 30

 35

 40

1q 1 2.5
5 7.5

10 12.5

Percentage of iterations assigned

(1.0%)

81
82
83
84

Figure 12:Adding GPUs to the heterogeneous scheme changing cores by GPUs. Color histogram
case study.

of queries. When the number of queries increases the cores receive more queries and,

due to the fact that they are slower than GPUs, the global behavior is subordinated to

them.

Another aspect to consider is the chunk size. Unexpectedly, one could think that hav-

ing a chunk size that balances the computational load will be the best option. However,

according to our results the best chunk size is just one query. This can be explained

considering that, in spite the chunk size used by the dynamic scheduling through the

OpenMP#pragma# directive, actually the system resolves just one query at a time,

i.e., OpenMP internally makes a for loop of chunk size and sends to the devices only

one query at a time. Moreover, the time spent on transferring queries is independent of

the chunk size.

In the next section we are going to analyze in detail the execution time distribution,

the number of queries assigned to every device and the relationship between execution

time and number of queries assigned.

27

4.1.2 Distribution of execution time and queries

Firstly, we show the behaviour of the heterogeneous system using 8 cores and one of

them managing one GPU (81).

Left column in Figures 13 and 14 shows the amount of queries resolved bythe

GPU or the cores. In the case of cores, due to the fact that there are 7 free cores, we

have considered the average number of queries processed. The right column shows the

execution time used by the different devices (GPU or cores) splitted in threeparts:

1. Transfer process: it represents the time spent in transferring the queries to the

GPU and retrieving the solutions of the query.

2. Kernel process: it represents the calculations of the solutions for each query by

the GPU.

3. Other processes: it represents other needed operations before transferring or cal-

culating. For instance, some operations carried out for the core that manages the

GPU.

In the case of cores, there is not transfer process or additional processes, then all the

time represents calculation of solutions for the queries.

In both cases, as the computational load increases (increasing the rangefor the dic-

tionary case study or increasing the retrieval percentage for the color histogram) the

heterogeneous system takes benefits of the power of the GPU. In those cases, it is nec-

essary to evaluate more objects in the database, and then the GPU is able to complete

more queries than the cores. For instance, in the last graph in Figure 14, each core

processes almost 1000 queries meanwhile the GPU processes almost 6000.

With respect to the execution time, there are two parts almost constant. One of

them is related to other processes. This time is difficult to avoid because the core has

to manage the GPU. The other one is the transfer process. As we explainedbefore, the

transfer time is independent of the chunk size, due to the way in which OpenMP sends

the queries to the GPU (in the case of cores there are not transferences). However, this

time could be reduced if we deceive OpenMP and really we send a complete chunk to

28

 0

 500

 1000

 1500

 2000

1 8 86 172 215 430 645 860 1075

N
um

be
r

of
 p

ro
ce

ss
ed

 q
ue

rie
s

Dynamic scheduling. Iterations per core
(range search r=1)

1 GPU
Average per Core

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 8 86 172
215

430
645

860
1075

1 8 86 172
215

430
645

860
1075

T
im

e
(s

ec
.)

Number of processed queries (iterations) per core
(range search: r=1)

other processes
kernel process

transfer process

Average per Core

CPU time processGPU time process

(a) r = 1

 0

 1000

 2000

 3000

 4000

 5000

1 8 86 172
215

430
645

860
1075

N
um

be
r

of
 p

ro
ce

ss
ed

 q
ue

rie
s

Dynamic scheduling. Iterations per core
(range search r=2)

1 GPU
Average per Core

 0

 2

 4

 6

 8

 10

 12

 14

1 8 86 172
215

430
645

860
1075

1 8 86 172
215

430
645

860
1075

T
im

e
(s

ec
.)

Number of processed queries (iterations) per core
(range search: r=2)

other processes
kernel process

transfer process

Average per Core

CPU time processGPU time process

(b) r = 2

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 8 86 172
215

430
645

860
1075

N
um

be
r

of
 p

ro
ce

ss
ed

 q
ue

rie
s

Dynamic scheduling. Iterations per core
(range search r=3)

1 GPU
Average per Core

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 8 86 172
215

430
645

860
1075

1 8 86 172
215

430
645

860
1075

T
im

e
(s

ec
.)

Number of processed queries (iterations) per core
(range search: r=3)

other processes
kernel process

transfer process

Average per Core

CPU time processGPU time process

(c) r = 3

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 8 86 172
215

430
645

860
1075

N
um

be
r

of
 p

ro
ce

ss
ed

 q
ue

rie
s

Dynamic scheduling. Iterations per core
(range search r=4)

1 GPU
Average per Core

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 8 86 172
215

430
645

860
1075

1 8 86 172
215

430
645

860
1075

T
im

e
(s

ec
.)

Number of processed queries (iterations) per core
(range search: r=4)

other processes
kernel process

transfer process

Average per Core

CPU time processGPU time process

(d) r = 4

Figure 13: Distribution of queries and execution time obtained by the heterogeneous system for
the Spanish dictionary case study, considering 8 cores and 1 GPU. Leftcolumn represents query
distribution and right column represents execution time distribution.29

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 11 112 225 281 563 845 1126 1408

N
um

be
r

of
 p

ro
ce

ss
ed

 q
ue

rie
s

Dynamic scheduling. Iterations per core
(range search equivalent to 0.01%)

1 GPU
Average per Core

 0

 1

 2

 3

 4

 5

 6

1 11 112
225

281
563

845
1126

1408
1 11 112

225
281

563
845

1126
1408

T
im

e
(s

ec
.)

Number of processed queries (iterations) per core
(range search equivalent to 0.01%)

other processes
kernel process

transfer process

Average per Core

CPU time processGPU time process

(a) 0,01%

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

1 11 112
225

281
563

845
1126

1408

N
um

be
r

of
 p

ro
ce

ss
ed

 q
ue

rie
s

Dynamic scheduling. Iterations per core
(range search equivalent to 0.1%)

1 GPU
Average per Core

 0

 2

 4

 6

 8

 10

 12

1 11 112
225

281
563

845
1126

1408
1 11 112

225
281

563
845

1126
1408

T
im

e
(s

ec
.)

Number of processed queries (iterations) per core
(range search equivalent to 0.1%)

other processes
kernel process

transfer process

Average per Core

CPU time processGPU time process

(b) 0,1%

 1000

 2000

 3000

 4000

 5000

 6000

1 11 112
225

281
563

845
1126

1408

N
um

be
r

of
 p

ro
ce

ss
ed

 q
ue

rie
s

Dynamic scheduling. Iterations per core
(range search equivalent to 1%)

1 GPU
Average per Core

 0

 5

 10

 15

 20

 25

 30

 35

1 11 112
225

281
563

845
1126

1408
1 11 112

225
281

563
845

1126
1408

T
im

e
(s

ec
.)

Number of processed queries (iterations) per core
(range search equivalent to 0.1%)

other processes
kernel process

transfer process

Average per Core

CPU time processGPU time process

(c) 1,0%

Figure 14:Distribution of queries and execution time obtained by the heterogeneous system for the
color histogram case study, considering 8 cores and 1 GPU. Left columnrepresents query distribution
and right column represents execution time distribution.

30

the GPU.

Regarding the execution time of the cores, as the number of queries assigned to each

core increases, the system forces the cores to spend more processingtime and reduces

the global system performance because it can not take benefits from theuse of the GPU.

If we consider the complete system, the behavior is exactly the same we have previ-

ously commented, although the queries are better gotten out among the GPUs. This can

be seen in Figures 15 and 16.

4.1.3 Scaling the number of queries

In order to study the robustness of the system, that is, if it behaves as we expect, we are

going to scale the number of queries for both databases. To words space, we processed

40 thousand new queries selected from a sample of the Chilean Web which was taken

from the TODOCL search engine. As vectors space we using a databasewith the same

features as the previous sections. This is a synthetic database with 1 million vectors.

This database represents a set of color histograms with 112 dimensions. Webuild the

data structure with 100 thousand objects and the rest 900 thousand as queries.

A priori, if the database remains constant, the execution time increases linearlyas

the number of queries also increases linearly, that is, the global system is scalable.

Then, Figure 17 shows the results for the words space when increasingthe queries

from 10 thousand to 40 thousand considering the whole system (8 cores and 4 GPUs)

and the smaller and bigger range (1 and 4 respectively). The legend 1, 10, 100 and

1000 represents the chunk size. Figure 18 shows the results for the color histogram

database when increasing the queries from 100 thousand to 900 thousand considering

the whole system and the smaller and bigger range (equivalent to 0.01 and 1 percentage

of retrieved information respectively). The legend 1, 10, 100, 1000 and 10000 represents

the chunk size.

For the color histogram database, we can observe the linear behavior ofthe system

meaning that the implementation is scalable. Notice that there is a slight improvement

by using a chunk of size 1 query, as we commented in previous sections dueto the opera-

31

 0

 500

 1000

 1500

 2000

1 8 86 172 215 430 645 860 1075

N
um

be
r

of
 p

ro
ce

ss
ed

 q
ue

rie
s

Dynamic scheduling. Iterations per core
(range search r=1)

Av. per GPU
Av. per Core

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 8 86 172
215

430
645

860
1075

1 8 86 172
215

430
645

860
1075

T
im

e
(s

ec
.)

Number of processed queries (iterations) per core
(range search: r=1)

Average per GPU:
other processes

kernel process
transfer process

Average per Core

CPU time processGPU time process

(a) r = 1

 0

 500

 1000

 1500

 2000

1 8 86 172
215

430
645

860
1075

N
um

be
r

of
 p

ro
ce

ss
ed

 q
ue

rie
s

Dynamic scheduling. Iterations per core
(range search r=2)

Av. per GPU
Av. per Core

 0

 2

 4

 6

 8

 10

 12

 14

1 8 86 172
215

430
645

860
1075

1 8 86 172
215

430
645

860
1075

T
im

e
(s

ec
.)

Number of processed queries (iterations) per core
(range search: r=2)

Average per GPU:
other processes

kernel process
transfer process

Average per Core

CPU time processGPU time process

(b) r = 2

 0

 500

 1000

 1500

 2000

1 8 86 172
215

430
645

860
1075

N
um

be
r

of
 p

ro
ce

ss
ed

 q
ue

rie
s

Dynamic scheduling. Iterations per core
(range search r=3)

Av. per GPU
Av. per Core

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 8 86 172
215

430
645

860
1075

1 8 86 172
215

430
645

860
1075

T
im

e
(s

ec
.)

Number of processed queries (iterations) per core
(range search: r=3)

Average per GPU:
other processes

kernel process
transfer process

Average per Core

CPU time processGPU time process

(c) r = 3

 0

 500

 1000

 1500

 2000

1 8 86 172
215

430
645

860
1075

N
um

be
r

of
 p

ro
ce

ss
ed

 q
ue

rie
s

Dynamic scheduling. Iterations per core
(range search r=4)

Av. per GPU
Av. per Core

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 8 86 172
215

430
645

860
1075

1 8 86 172
215

430
645

860
1075

T
im

e
(s

ec
.)

Number of processed queries (iterations) per core
(range search: r=4)

Average per GPU:

other processes
kernel process

transfer process

Average per Core

CPU time processGPU time process

(d) r = 4

Figure 15: Distribution of queries and execution time obtained by the heterogeneous system for
the Spanish Dictionary case study, considering 8 cores and 4 GPU. Leftcolumn represents query
distribution and right column represents execution time distribution.32

 800

 1000

 1200

 1400

 1600

 1800

 2000

1 11 112 225 281 563 845 1126 1408

N
um

be
r

of
 p

ro
ce

ss
ed

 q
ue

rie
s

Dynamic scheduling. Iterations per core
(range search equivalent to 0.01%)

Average per GPU
Average per Core

 0

 1

 2

 3

 4

 5

 6

1 11 112
225

281
563

845
1126

1408
1 11 112

225
281

563
845

1126
1408

T
im

e
(s

ec
.)

Number of processed queries (iterations) per core
(range search equivalent to 0.01%)

Average per GPU:
other processes

kernel process
transfer process

Average per Core

CPU time processGPU time process

(a) 0,01%

 500

 1000

 1500

 2000

 2500

1 11 112
225

281
563

845
1126

1408

N
um

be
r

of
 p

ro
ce

ss
ed

 q
ue

rie
s

Dynamic scheduling. Iterations per core
(range search equivalent to 0.1%)

Average per GPU
Average per Core

 0

 2

 4

 6

 8

 10

 12

1 11 112
225

281
563

845
1126

1408
1 11 112

225
281

563
845

1126
1408

T
im

e
(s

ec
.)

Number of processed queries (iterations) per core
(range search equivalent to 0.1%)

Average per GPU:
other processes

kernel process
transfer process

Average per Core

CPU time processGPU time process

(b) 0,1%

 0

 500

 1000

 1500

 2000

 2500

 3000

1 11 112
225

281
563

845
1126

1408

N
um

be
r

of
 p

ro
ce

ss
ed

 q
ue

rie
s

Dynamic schedule. Iterations per Core
(range search equivalent to 1%)

Average per GPU
Average per Core

 0

 5

 10

 15

 20

 25

 30

 35

1 11 112
225

281
563

845
1126

1408
1 11 112

225
281

563
845

1126
1408

T
im

e
(s

ec
.)

Number of processed queries (iterations) per core
(range search equivalent to 1.0%)

Average per GPU:

others processes
kernel process

transfer process

Average per Core

CPU time processGPU time process

(c) 1,0%

Figure 16:Distribution of queries and execution time obtained by the heterogeneous system for the
color histogram case study, considering 8 cores and 4 GPU. Left columnrepresents query distribution
and right column represents execution time distribution.

33

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

1 2 3 4

T
im

e
(s

ec
.)

Number of processed queries x10.000.−
(range search r=1)

1
10

100
1000

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4

T
im

e
(s

ec
.)

Number of processed queries x10.000.−
(range search r=4)

1
10

100
1000

Figure 17:System scalability. Execution time vs. chunk size when the number of queries isvaried
from 10 thousand to 40 thousand considering 1 and 4 as range search ina system with 8 cores and 4
GPUs.

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 2 3 4 5 6 7 8 9

T
im

e
(s

ec
.)

Number of processed queries x100.000.−
(range search equivalent to 0.01%)

1
10

100
1000

10000

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

1 2 3 4 5 6 7 8 9

T
im

e
(s

ec
.)

Number of processed queries x100.000.−
(range search equivalent to 1.0%)

1
10

100
1000

10000

Figure 18:System scalability. Execution time vs. chunk size when the number of queries isvaried
from 100 thousand to 900 thousand considering 0.01% and 1% of percentage of retrieved information
in a system with 8 cores and 4 GPUs.

34

tion way of OpenMP. However, considering such a huge amount of data,the chunk sizes

10, 100 and also 1000 provide good results, being between almost 0.01% of the number

of queries (chunk size 10 over 900.000 queries) and 1% (chunk size 1000 over 100.000

queries), i.e, relative small chunks. However, as this percentage increases (chunk size

10.000 over 100.000 queries) the behavior is worst.

For the words space the behaviour is similar. Nevertheless, we can see that for

a chunk size of 1000 and range search 4 the performance is very poor. In this case,

independently of the number of queries (from 10 to 40 thousand), each core resolves

one chunk (1000 queries) while the GPU resolves the remaining queries during the

same time (6 to 36 thousand). The reason of this behaviour is the use of a relative big

chunk size (10% to 2.5%) that gives more work to the cores and leaves the GPUs idle

(see Figure 15(d)).

4.1.4 Discussion

Along this section, a heterogeneous implementation has been introduced where the

queries are simultaneously processed in the multicore and the GPUs.

The first thing to remark is that the heterogeneous implementation, which exploits

all the underlying resources in the system, improves the execution time with respect us-

ing only multicores or GPUs. The heterogeneous implementation tested using a basic

configuration (8 cores and 1 GPU) is up to 31 times faster than the sequentialimple-

mentation, up to 4 times faster than the multicore implementation and up to 1.3 times

faster than the GPU implementation for the Spanish Dictionary case study.

This computational power has been increased using up to 8 cores and 4 GPUs, reach-

ing from 9 to 95 times faster than the sequential implementation for the Spanish Dictio-

nary case study, and from 10 to 32 times faster for the color histograms.

Regarding the queries distribution, the more computational complexity the more

benefits from the use of the GPUs because they can process more quantityof queries

and then the cores do not act as a bottleneck.

With respect to the execution time distribution, notice that the time spent in auxiliary

35

processes and in transferring data remain almost constant, meanwhile the kernel process

increases as the complexity of the problem also increases. This situation is quitegood

because it indicates that most time is spent in processing. However, a deeper analysis

leads to think that it is possible to improve the performance if the time spent in transfer

process is reduced (other processes can not be avoided because they represent needed

operations carried out by the core to manage the GPU). The key point is answering why

the best performance is obtained by processing one query at a time. As wecommented,

this is due to the fact that despite we indicate to OpenMP to process a chunk ofqueries,

internally OpenMP interprets to process a set of queries one by one in a loop. Then,

OpenMP sends one query at a time to the GPU which results in increasing the time

spent transferring the queries. Thus, this algorithm could be improved if we deceive the

OpenMP internal operation way and we send to the GPU a real chunk of queries.

Finally, as we expected, the algorithm is scalable.

4.2 Heterogeneous implementation considering a batch of queries

- one kernel

According to the final comment of the last section, in this section we introduce ablock-

oriented implementation in order to reduce the number of calls to the kernel (saving

time) and, of course, reduce the number of transferences (saving more time).

To carry out this block-oriented implementation, different changes have tobe intro-

duced in the code.

Firstly, we have to change the code which calls the kernel because, as wesaid in

Section 4.1.2, it is necessary to deceive OpenMP in order to send a completechunk of

queries to the kernel instead of one query at a time.

The key point is that, the loop variable does not vary for all the queries. In this case,

it varies till the number of blocks (NUM BLOCKS = NUM QUERIES
MQ).

Notice, that before calling the kernel, a complete block of queries has beenallocated

to the global memory of the GPU.

36

Regarding the changes carried out in the proposed kernel describedin Section 3.2,

we have the following:

1. To allocate to global memory of the GPU the needed structures containing the

solutions of processing a block ofMQ queries, beingMQ the size of the block.

2. After that, theMQ queries are transferred to the global memory of the GPU during

the resolution stage.

3. Really, the kernel is the same that was presented in Section 3.2, but in this case

instead of processing just a query, it iterates to solve the complete block.

4. Finally, solutions of theMQ queries are transferred to the host memory.

A special case is when the last block has less thanMQ queries. In this case this

block is resolved query by query using the whole system (as version 1).

4.2.1 Execution time

In Figures 19, 20 and 21 the results in terms of execution time for the Spanish Dictionary

are presented. Each graph corresponds to a range search (r = 1,2,3,4), and the same

notation as in Figures 8 and 9 is used for indicating the number of cores and GPUs.

Axis X corresponds to the percentage of queries (except for 1q that means 1 query). In

Y axis, the execution time in seconds is represented.

In Figure 19 we can observe that when the complexity of the problem increases,

the size of the block has a negative influence because no improvements areobtained

considering more GPUs in the system. This occurs, especially for higher block sizes,

because the cores become the bottleneck of the system. When the block size issmall,

the GPUs have the capacity of solving more queries and then the behavior ofthe system

is better (see Figure 25).

Figure 20 shows the result of the implementation presented in Section 4.1 (v1 in

legend) with respect to the one here presented (v2 in legend). Obviously, the system

improves the execution time, especially when considering a small block size. Indeed,

if we make a zoom (see Figure 21) we can observe that the improvement reached with

37

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

1q 2.5
5 7.5

10 12.5

T
im

e
(s

ec
.)

Query blocksize assigned to device

(r=1)

81
82
83
84

 2

 4

 6

 8

 10

 12

 14

 16

 18

1q 2.5
5 7.5

10 12.5

Query blocksize assigned to device

(r=2)

81
82
83
84

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

1q 2.5
5 7.5

10 12.5

Query blocksize assigned to device

(r=3)

81
82
83
84

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

1q 2.5
5 7.5

10 12.5
Query blocksize assigned to device

(r=4)

81
82
83
84

Figure 19:Adding GPUs to the second version for the heterogeneous scheme, changing cores by
GPUs. Spanish dictionary case study.

 1.8
 2

 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

1q 2.5
5 7.5

10 12.5

T
im

e
(s

ec
.)

Query blocksize assigned to device

(r=1)

v2
v1

 2

 4

 6

 8

 10

 12

 14

 16

1q 2.5
5 7.5

10 12.5

Query blocksize assigned to device

(r=2)

v2
v1

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

1q 2.5
5 7.5

10 12.5

Query blocksize assigned to device

(r=3)

v2
v1

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

1q 2.5
5 7.5

10 12.5
Query blocksize assigned to device

(r=4)

v2
v1

Figure 20:Comparing results for version v1 and v2. Spanish dictionary case study.

the new implementation is up to 17% in the best case, decreasing as the range increases

until 1.5% (block size in X axis, not percentage). Another important result can beseen

in Figure 21 is that the best performance is not obtained for 1 query, butfor a small

block size (8), that is around 0.1% of the total queries.

In Figures 22, 23 and 24 the results in terms of execution time for the color his-

togram are presented. Each graph corresponds to a percentage of retrieved information

(0.01%, 0.1%, 1%). Axis X corresponds to percentage of queries (except for 1q that

means 1 query). In Y axis, the execution time in seconds is represented. These fig-

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

1/8 86 172 215

T
im

e
(s

ec
.)

Query blocksize assigned to device

(r=1)

v2
v1

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

1/8 86 172 215

Query blocksize assigned to device

(r=2)

v2
v1

 6

 7

 8

 9

 10

 11

 12

 13

1/8 86 172 215

Query blocksize assigned to device

(r=3)

v2
v1

 6

 8

 10

 12

 14

 16

 18

 20

 22

1/8 86 172 215
Query blocksize assigned to device

(r=4)

v2
v1

Figure 21:Details for small blocksizes, using real blocksize: 1 - 1q, 8 - 0.1%, 86 - 1%, 172 - 2%,
215 - 2.5%. Spanish dictionary case study.

38

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

1q 1 2.5
5 7.5

10 12.5

T
im

e
(s

ec
.)

Query Blocksize Assigned to Device

(0.01%)

81
82
83
84

 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14

1q 1 2.5
5 7.5

10 12.5

Query Blocksize Assigned to Device

(0.1%)

81
82
83
84

 5

 10

 15

 20

 25

 30

 35

 40

1q 1 2.5
5 7.5

10 12.5

Query Blocksize Assigned to Device

(1.0%)

81
82
83
84

Figure 22:Adding GPUs to the second version for the heterogeneous scheme, changing cores by
GPUs. Color histogram case study.

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

1q 1 2.5
5 7.5

10 12.5

T
im

e
(s

ec
.)

Percentage of Queries Resolved

(0.01%)

v2
v1

 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14

1q 1 2.5
5 7.5

10 12.5

Percentage of Queries Resolved

(0.1%)

v2
v1

 5

 10

 15

 20

 25

 30

 35

 40

1q 1 2.5
5 7.5

10 12.5

Percentage of Queries Resolved

(1.0%)

v2
v1

Figure 23:Comparing results for version v1 and v2. Color histogram case study.

ures endorse the results previously obtained for the Spanish Dictionary case study. The

improvement reached with the new implementation is up to 25% in the best case, de-

creasing as the percentage of retrieved information increases until 11%.In this case

the best performance is obtained for a block size of 11, that is around 0.1% of the total

queries.

In both cases when the range increases the improvement of the execution timede-

creases. This behaviour was expected because the benefits obtained inversion 2 are due

to less time spent in transferences and kernel calls, and this time remains more or less

constant, leading to less influence on the overall result.

4.2.2 Distribution of execution time and queries

Figures 25 and 26 show the queries distribution among the devices (left column) and the

execution time distribution (right column) for a system of 8 cores and 4 GPUs.Notice

that for a small block size, the GPUs carried out an important percentage ofthe queries

39

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

1/11 112 225 281

T
im

e
(s

ec
.)

Batch of Queries Resolved by device

(0.01%)

v2
v1

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

1/11 112 225 281
Batch of Queries Resolved by device

(0.1%)

v2
v1

 7

 8

 9

 10

 11

 12

 13

1/11 112 225 281
Batch of Queries Resolved by device

(1.0%)

v2
v1

Figure 24:Details for small blocksizes, using real blocksize: 1 - 1q, 11 - 0.1%, 112 - 1%, 225 - 2%,
281 - 2.5%. case Color histogram study.

(see bottom of both figures).

Regarding the execution time distribution, we observe that the time spent in transfer-

ring the queries has been dramatically reduced up to 50% respect to the implementation

in Section 4.1.

4.2.3 Scaling the number of queries

When we increase the number of queries in order to observe the behaviorof the system

in a stress operation mode, the best behavior does not correspond to blocks of size 1

query as in the version 1, but also for block size between 10 and 100 forthe words space

(see Figure 27) and between 100 and 1000 to the vector space (see Figure 28). For color

histograms, a block size of 10000 cannnot be used because the neededstructures cannot

be allocated to the global memory.

Figures 29 and 30 show the comparative results for words space and vector space

using the best choice in version 1, presented in Section 4.1, and version 2(here pre-

sented). We appreciate that the block-oriented implementation improves the execution

time. This improvement ranges from 20% (100 thousand queries) to 28% (900 thousand

queries) for the color histograms.

For the words space we need to make a deeper analysis. For a blocksize of 100

and range search 1, the improvement ranges from 19% (10 thousand queries) to 21%

(40 thousand queries). Nevertheless, a blocksize of 100 was not apropriate for range 4,

getting better results for a blocksize of 10 with an improvement of 9% for 40 thousand

40

 0

 500

 1000

 1500

 2000

1 8 86 172 215 430 645 860 1075

N
um

be
r

of
 p

ro
ce

ss
ed

 q
ue

rie
s

Query batch size processed by device.
(range search r=1)

Av. per GPU
Av. per Core

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 8 86 172
215

430
645

860
1075

1 8 86 172
215

430
645

860
1075

T
im

e
(s

ec
.)

Query batch size processed by device.
(range search: r=1)

Average per GPU:
other processes

kernel process
transfer process

Average per Core

CPU time processGPU time process

(a) r = 1

 0

 500

 1000

 1500

 2000

1 8 86 172
215

430
645

860
1075

N
um

be
r

of
 p

ro
ce

ss
ed

 q
ue

rie
s

Query batch size processed by device.
(range search r=2)

Av. per GPU
Av. per Core

 0

 2

 4

 6

 8

 10

 12

 14

1 8 86 172
215

430
645

860
1075

1 8 86 172
215

430
645

860
1075

T
im

e
(s

ec
.)

Query batch size processed by device.
(range search: r=2)

Average per GPU:
other processes

kernel process
transfer process

Average per Core

CPU time processGPU time process

(b) r = 2

 0

 500

 1000

 1500

 2000

1 8 86 172
215

430
645

860
1075

N
um

be
r

of
 p

ro
ce

ss
ed

 q
ue

rie
s

Query batch size processed by device.
(range search r=3)

Av. per GPU
Av. per Core

 0

 10

 20

 30

 40

 50

 60

1 8 86 172
215

430
645

860
1075

1 8 86 172
215

430
645

860
1075

T
im

e
(s

ec
.)

Query batch size processed by device.
(range search: r=3)

Average per GPU:
other processes

kernel process
transfer process

Average per Core

CPU time processGPU time process

(c) r = 3

 0

 500

 1000

 1500

 2000

1 8 86 172
215

430
645

860
1075

N
um

be
r

of
 p

ro
ce

ss
ed

 q
ue

rie
s

Query batch size processed by device.
(range search r=4)

Av. per GPU
Av. per Core

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 8 86 172
215

430
645

860
1075

1 8 86 172
215

430
645

860
1075

T
im

e
(s

ec
.)

Query batch size processed by device.
(range search: r=4)

Average per GPU:
other processes

kernel process
transfer process

Average per Core

CPU time processGPU time process

(d) r = 4

Figure 25: Distribution of queries and execution time obtained by the heterogeneous system for
the Spanish Dictionary case study, considering 8 cores and 4 GPU. Leftcolumn represents query
distribution and right column represents execution time distribution.41

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

1 11 112 225 281 563 845 1126 1408

N
um

be
r

of
 p

ro
ce

ss
ed

 q
ue

rie
s

Query batch size processed by device.
(range search equivalent to 0.01%)

Average per GPU
Average per Core

 0

 1

 2

 3

 4

 5

 6

1 11 112
225

281
563

845
1126

1408
1 11 112

225
281

563
845

1126
1408

T
im

e
(s

ec
.)

Query batch size processed by device.
(range search equivalent to 0.01%)

Average per GPU:
other processes

kernel process
transfer process

Average per Core

CPU time processGPU time process

(a) 0,01%

 0

 500

 1000

 1500

 2000

 2500

1 11 112
225

281
563

845
1126

1408

N
um

be
r

of
 p

ro
ce

ss
ed

 q
ue

rie
s

Query batch size processed by device.
(range search equivalent to 0.1%)

Average per GPU
Average per Core

 0

 2

 4

 6

 8

 10

 12

1 11 112
225

281
563

845
1126

1408
1 11 112

225
281

563
845

1126
1408

T
im

e
(s

ec
.)

Query batch size processed by device.
(range search equivalent to 0.1%)

Average per GPU:
other processes

kernel process
transfer process

Average per Core

CPU time processGPU time process

(b) 0,1%

 0

 500

 1000

 1500

 2000

 2500

 3000

1 11 112
225

281
563

845
1126

1408

N
um

be
r

of
 p

ro
ce

ss
ed

 q
ue

rie
s

Query batch size processed by device.
(range search equivalent to 1.0%)

Average per GPU
Average per Core

 0

 5

 10

 15

 20

 25

 30

 35

1 11 112
225

281
563

845
1126

1408
1 11 112

225
281

563
845

1126
1408

T
im

e
(s

ec
.)

Query batch size processed by device.
(range search equivalent to 1.0%)

Average per GPU:

other processes
kernel process

transfer process

Average per Core

CPU time processGPU time process

(c) 1,0%

Figure 26:Distribution of queries and execution time obtained by the heterogeneous system for the
case color histogram study, considering 8 cores and 4 GPU. Left columnrepresents query distribution
and right column represents execution time distribution.

42

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

1 2 3 4

T
im

e
(s

ec
.)

Number of processed queries x10.000.−
(range search r=1)

1
10

100
1000

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4

T
im

e
(s

ec
.)

Number of processed queries x10.000.−
(range search r=4)

1
10

100
1000

Figure 27:Version 2: System scalability. Execution time vs. chunk size when the number of queries
is varied from 10 thousand to 40 thousand considering range search 1 and 4 in a system with 8 cores
and 4 GPUs.

 0

 50

 100

 150

 200

 250

 300

 350

1 2 3 4 5 6 7 8 9

T
im

e
(s

ec
.)

Number of processed queries x100.000.−
(range search equivalent to 0.01%)

1
10

100
1000

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 2 3 4 5 6 7 8 9

T
im

e
(s

ec
.)

Number of processed queries x100.000.−
(range search equivalent to 1.0%)

1
10

100
1000

Figure 28:Version 2: System scalability. Execution time vs. chunk size when the number of queries
is varied from 100 thousand to 900 thousand considering 0.01% and 1% of percentage of retrieved
information in a system with 8 cores and 4 GPUs.

43

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

1 2 3 4

T
im

e
(s

ec
.)

Number of processed queries x10.000.−
(range search r=1)

v2 − 100
v1 − 001

 5

 10

 15

 20

 25

 30

 35

1 2 3 4

T
im

e
(s

ec
.)

Number of processed queries x10.000.−
(range search r=4)

v2 − 100
v2 − 10

v1 − 001

Figure 29:Version 2: Scaling the number of queries from 10 thousand to 40 thousandconsidering
range search 1 and 4 in a system with 8 cores and 4 GPUs. Comparing results for version 1, best
option with number of queries equal to 1, versus the second version with block size equal to 100
(MQ = 100) and also equal to 10 for range 4.

 0

 50

 100

 150

 200

 250

 300

 350

1 2 3 4 5 6 7 8 9

T
im

e
(s

ec
.)

Number of processed queries x100.000.−
(range search equivalent to 0.01%)

v2 − 100
v1 − 001

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 2 3 4 5 6 7 8 9

T
im

e
(s

ec
.)

Number of processed queries x100.000.−
(range search equivalent to 1.0%)

v2 − 100
v1 − 001

Figure 30:Version 2: Scaling the number of queries from 100 thousand to 900 thousand considering
0.01% and 1% of percentage of retrieved information in a system with 8 cores and 4 GPUs. Com-
paring results for version 1, best option with number of queries equal to 1, versus the second version
with block size equal to 100 (MQ = 100).

queries but no improvement for 10 thousand queries, i.e., this blocksize is still big for

the amount of queries considered.

4.2.4 Discussion

As expected, the block-oriented implementation improves the performance of the 1

query implementation. This is due to the fact that the time spent in transferring the

queries has been dramatically reduced up to 50% with respect to the version1. The

execution time has been improved (with respect to v1) up to 25%, and up to 27%when

44

scaling.

However, dealing with a block of queries has a fault. That is, dealing with a block of

queries forces to allocate needed structures in the global memory to store thesolutions.

In particular, in the worst case we need a bidimensional array of dimensionMQ×D,

beingMQ the block size andD the number of objects in database. In version 1, we only

need, as a maximum, an array of dimensionD. Thus, the block size used in version 2

is limited by the available storage. However, this situation is not of concern because we

have proved along the paper that small block sizes are more suitable.

With respect to the sequential version, the speed-ups obtained range from 13 to 36

for color histograms, and from 10 to 97 for words space.

5 Conclusion and Future Works

In this paper two heterogeneous implementations for similarity search in metric spaces,

using a generic metric structure (GMS), were presented. The first one (version 1) takes

into account that each query is completely processed in a unique kernel (one query - one

kernel). The second one (version 2) corresponds to a block-oriented implementation

transferring a chunk of queries (MQ queries) at a time and processing it in the unique

kernel (MQ queries - one kernel).

With respect to memory usage, more queries need to be allocated to the global mem-

ory in version 2, leaving less space for the GMS and the database (comparing with ver-

sion 1). Moreover, also a bigger data structure is required to store the results of the

queries.

The time spent in data transfer and calls to the kernel has been reduced in version 2

with respect to version 1. Although the amount of data transferred is the same in both

versions, it is faster to transferMQ queries in one packet (one kernel) than transferMQ

“packets” of one query (MQ kernels). In general, the reduction in transfering data is up

to 50%.

Another measure of the speed of the algorithm is answering the question, how many

45

X
X

X
X

X
X

X
X

X
X

X
X

Algorithms
Spaces Spanish Dictionary Color Histograms

1 4 0.1 1.0

sequential (1 core) 409 12 333 44

multicore (8 cores) 3098 95 2472 342

1 GPU (1 q - 1 k) 616 290 648 336

1 GPU (MQ q - 1 k) 769 310 873 372

4 GPU (1 q - 1 k) 2131 1122 2069 1305

4 GPU (MQ q - 1 k) 2922 1216 3086 1493

Full System v 1 3638 1152 3292 1411

Full System v 2 4378 1169 4362 1586

Table 3:Number of queries per second for all versions, considering only the maximum and minimum
range.

queries are processed per second?. The answer is given in Table 3.

In Table 3 the worst case is given when considering the upper range search for

Spanish dictionary case study (r=4) or the upper percentage of information retrieved

for the color histograms case study (1%). On the other hand, the best case is given when

considering the lower range search for the Spanish dictionary case study (r=1) or the

lower percentage of information retrieved for the color histograms case study (0.01%).

As we expected, the number of queries processed for both case studiesis similar, and

evidently the version 2 processes a high number of queries, especially when the best

case is considered.

Comparing the sequential version against the full system v2 we can see that for small

ranges we get a speed-up between 10 and 13, while for high ranges weget a speed-up

between 36 and 97. The reason of these results is related to the behaviourof the metric

structure. For small ranges more objects are discarded, so less distanceevaluations are

performed. On the contrary, for high ranges the behaviour of the structure is worst, more

distance evaluations are performed, there is more computational load, and more benefits

can be obtained from the parallel platform.

If the measure to take into account is the number of queries processed by the GPUs

versus the number of queries processed by the core, this ratio varies between 1.5 and 20

for the Spanish dictionary case study and between 2 and 6 for the color histograms case

study. In both cases, the best results are obtained when the complexity of the problem

46

increases. That profs that the GPUs are better exploited.

Finally, as shown, the system scales properly, obtaining an almost linear perfor-

mance.

According to the experimental results, sometimes the use of the CPU cores instead

of benefitting the performance represents a bottleneck. Thus, in a futurework other

kind of load distribution can be considered. For instance, due to the fact that GPUs are

quicker than CPU cores, it is possible to assign a fix amount of queries to allthe GPUs

(for example, 80% of queries) and the rest to the CPU cores. Then, this 80% of queries

are processed by the GPUs in blocks as in this paper. The rest of queries are processed

dynamically one-by-one by the CPU cores. Evidently, in this case it is necessary to tune

in this percentage according to a previous speed-up study.

During this paper, we have considered different parameters to measurethe goodness

of the implementation, as execution time, distance evaluation and needed storage. How-

ever, we can introduce a new parameter as energy efficiency or energy consumption. In

this case, we could assess that the better implementation spends less time, needsless

memory and consumes less energy.

Finally, we could extend the block-oriented implementation not only to GPUs but

also to main memory and secondary memory in order to improve the performance.

Acknowledgments

This work has been partially supported by the Ministerio de Ciencia e Innovación,

project SATSIM (Ref: CGL2010-20787-C02-02), Spain and Vice-Chancellory of Re-

search at the University of Magallanes, Chile.

References

[1] NVIDIA CUDA C Programming Guide, Version 4.0. NVIDIA, 2011.

http://developer.nvidia.com/object/ gpucomputing.html.

47

[2] Adil Alpkocak, Taner Danisman, and Ulker Tuba. A parallel similarity search in

high dimensional metric space using m-tree. InAdvanced Environments, Tools,

and Applications for Cluster Computing, volume 2326 ofLNCS, pages 247–252.

Springer Berlin / Heidelberg, 2002.

[3] Ricardo Baeza-Yates, Walter Cunto, Udi Manber, and Sun Wu. Proximity match-

ing using fixed-queries trees. In5th Combinatorial Pattern Matching (CPM’94),

volume 807 ofLNCS, pages 198–212. Springer Berlin Heidelberg, 1994.

[4] Ricardo J. Barrientos, José I. Gómez, Christian Tenllado, Manuel Prieto, and

Mauricio Marin. kNN query processing in metric spaces using GPUs. In17th

International European Conference on Parallel and Distributed Computing (Euro-

Par 2011), volume 6852 ofLNCS, pages 380–392, Berlin, Heidelberg, 2011.

Springer.

[5] Ricardo J. Barrientos, José I. Gómez, Christian Tenllado, Manuel Prieto, and

Mauricio Marin. Range query processing in a multi-GPU environment. In10th

IEEE International Symposium on Parallel and Distributed Processing with Ap-

plications (ISPA 2012), pages 419–426, Madrid, Spain, July 2012.

[6] Sergei Brin. Near neighbor search in large metric spaces. Inthe 21st VLDB Con-

ference, pages 574–584. Morgan Kaufmann Publishers, 1995.

[7] Edgar Ch́avez, Jośe L. Marroqúın, and Gonzalo Navarro. Fixed queries array: A

fast and economical data structure for proximity searching.Multimedia Tools and

Applications, 14(2):113–135, June 2001.

[8] Edgar Ch́avez, Gonzalo Navarro, Ricardo Baeza-Yates, and José Luis Marroqúın.

Searching in metric spaces.ACM Computing Surveys, 33(3):273–321, 2001.

[9] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree : An efficient access

method for similarity search in metric spaces. Inthe 23st International Conference

on VLDB, pages 426–435, 1997.

48

[10] Vincent Garcia, Eric Debreuve, and Michel Barlaud. Fast k nearest neighbor

search using GPU.Computer Vision and Pattern Recognition Workshop, 0:1–6,

2008.

[11] Veronica Gil-Costa, Ricardo Barrientos, Mauricio Marin, and Carolina Bonacic.

Scheduling metric-space queries processing on multi-core processors.Euromicro

Conference on Parallel, Distributed, and Network-Based Processing, 0:187–194,

2010.

[12] Veronica Gil-Costa, Mauricio Marin, and Nora Reyes. Parallel query processing

on distributed clustering indexes.Journal of Discrete Algorithms, 7(1):3–17, 2009.

[13] Ananth Grama, George Karypis, Vipin Kumar, and Anshul Gupta.Introduction to

Parallel Computing (2nd Edition). Addison Wesley, 2 edition, 2003.

[14] Magnus Hetland. The basic principles of metric indexing. In Carlos Coello,

Satchidananda Dehuri, and Susmita Ghosh, editors,Swarm Intelligence for Multi-

objective Problems in Data Mining, volume 242 ofStudies in Computational In-

telligence, pages 199–232. Springer Berlin / Heidelberg, 2009.

[15] Iraj Kalantari and Gerard McDonald. A data structure and an algorithm for the

nearest point problem.IEEE Transactions on Software Engineering, 9(5):631–

634, September 1983.

[16] Quansheng Kuang and Lei Zhao. A practical GPU based kNN algorithm. Interna-

tional Symposium on Computer Science and Computational Technology (ISCSCT),

pages 151–155, 2009.

[17] Luisa Micó, Jośe Oncina, and Rafael C. Carrasco. A fast branch & bound nearest

neighbour classifier in metric spaces.Pattern Recognition Letters, 17(7):731–739,

June 1996.

[18] Maŕıa Luisa Mićo, Jośe Oncina, and Enrique Vidal. A new version of the nearest-

neighbour approximating and eliminating search algorithm (aesa) with linear pre-

processing time and memory requirements.Pattern Recognition Letters, 15(1):9–

17, January 1994.

49

[19] Gonzalo Navarro and Roberto Uribe-Paredes. Fully dynamic metric access meth-

ods based on hyperplane partitioning.Information Systems, 36(4):734 – 747, 2011.

[20] Oscar Pedreira and Nieves R. Brisaboa. Spatial selection of sparse pivots for sim-

ilarity search in metric spaces. In33rd Conference on Current Trends in Theory

and Practice of Computer Science (SOFSEM 2007), volume 4362 ofLNCS, pages

434–445, Harrachov, Czech Republic, 2007. Springer.

[21] Jeffrey K. Uhlmann. Satisfying general proximity/similarity queries with metric

trees. InInformation Processing Letters, volume 40, pages 175–179, 1991.

[22] Roberto Uribe-Paredes, Enrique Arias, José L. Śanchez, Diego Cazorla, and Pedro

Valero-Lara. Improving the performance for the range search on metricspaces us-

ing a multi-GPU platform. InDatabase and Expert Systems Applications (DEXA),

volume 7447 ofLecture Notes in Computer Science, pages 442–449. Springer

Berlin Heidelberg, 2012.

[23] Roberto Uribe-Paredes, Diego Cazorla, José L. Śanchez, and Enrique Arias. A

comparative study of different metric structures: Thinking on GPU implementa-

tions. In Lecture Notes in Engineering and Computer Science: Proceedings of

The World Congress on Engineering 2012 (WCE 2012), pages 312–317, London,

England, July 2012.

[24] Roberto Uribe-Paredes, Pedro Valero-Lara, Enrique Arias, Jośe Luis Sanchez, and

Diego Cazorla. Similarity search implementations for multi-core and many-core

processors. InInternational Conference on High Performance Computing and

Simulation (HPCS), pages 656–663, 2011.

[25] URL. Green 500 list. http://www.green500.org/.

[26] URL. Top 500 list. http://www.top500.org/.

[27] Pavel Zezula, Pasquale Savino, Fausto Rabitti, Giuseppe Amato, andPaolo Ciac-

cia. Processing m-trees with parallel resources. InRIDE ’98: Proceedings of the

Workshop on Research Issues in Database Engineering, pages 147–, Washington,

DC, USA, 1998. IEEE CS.

50

