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1. Introduction

Current cloud computing infrastructure typically assumes a homogeneous collection of com-

modity hardware [1]. Some applications may have a high computational processing requirements that

cannot be obtained from these commodity servers. These include numerical intensive applications,

applications with high parallelism, and applications that exhibit near real-time performance require-

ments. One strategy for increasing processing efficiency to the cloud is to add heterogeneity; providing

access to resources better suited to complex computation [2]. Heterogeneous systems integrate more

than one processing unit with different performance and energy consumption characteristics. Unlike

its homogeneous counterpart, a heterogeneous system address both throughput and efficiency for var-

ious workloads by matching resources to each application’s needs and has a much higher potential in

saving energy. However, exploiting this potential requires a well designed resource allocation system

that maps heterogeneous resources to applications’ requirement with minimum cost in performance

and power. This is a nontrivial task.

Field-programmable gate array (FPGAs) offer a significant acceleration in execution over CPUs.

They are also significantly more power-efficient, resulting in a computational efficiency improvement

in the orders of magnitude over both CPUs and GPUs [3], [4]. As more and more workloads are

being deployed in the cloud, it is appropriate to consider how to make FPGAs and their capabilities
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available in the cloud [5].

Virtualization technologies enable rapid provisioning of Virtual Machines (VMs) and thus allow

cloud services to scale up and down resources allocated to them on-demand. This elasticity can

be achieved horizontally where VMs are changed during a service’s operation and vertically where

capabilities of a running VM, typically in terms of CPU and RAM, are changed dynamically. Resource

provisioning offered by Infrastructure as a Service (IaaS) providers, e.g. Amazon EC2 [6] is typically

done through horizontal scaling of resources. Using a VM as scaling unit is generally coarse grained

and can cause unnecessary over-provisioning [7]. Conversely, vertical elasticity allows fine-grained

resource allocation and rapid resource enactment—resources may be allocated for as short as a few

seconds. Vertical elasticity could thus enable efficient resource provisioning and power usage.

Autonomous resource provisioning in the cloud has been widely studied to guaranty system-

wide performance, that is, to optimize data center resource management for pure performance [8].

Energy consumption has become a fundamental problem in data centers, raising issues to all energy-

related costs, including capital, operating expenses, and environmental impacts [9]. It is important

to minimize energy consumption to insure a sustainable future growth of cloud computing. However,

minimizing power consumption may inherently result in performance degradations. It is thus essential

to guarantee the application Quality of Service (QoS) while minimizing the power consumption.

Existing power management systems based on dynamic voltage frequency scaling (DVFS),

including the linux on demand CPU governor [10] and most OS implementations, are changed based

on CPU utilization. That is, CPU frequency is changed depending on its utilization. For example

the on demand governor transitions to the next higher or lower p-state if the current CPU utilization

crosses a threshold for a certain period of time. However, this approach can cause over or under-

provisioning as it is oblivious to the observed performance of each service. We argue that to save power

without service-level objective (SLO) violations, DVFS decisions should be based on application-level

performance and server power usage.

In this paper, we propose a system for power- and performance-efficient resource manage-

ment in heterogeneous clouds. The proposed approach maps applications’ requirement to resources

(CPU/FPGA) with minimum cost in performance and power. A technique that combines schedul-

ing of FPGAs and optimized resource allocation technique for commodity servers is proposed. The

scheduler makes efficient use of FPGAs by controlling the assignment of FPGA to computationally

intensive applications. For the other concurrently running applications, the optimizer employs both



virtual machine resizing (CPU) and dynamic CPU frequency scaling to optimize server power and

performance. In particular, the contributions of this work are:

• Design of performance and power models to determine the relationship between application-level

performance (and server power) and resource allocation of the system (Section 3.1).

• An optimizer that minimizes power consumption while meeting performance targets. The op-

timizer allocates the right amount of resources for each application and combined with CPU

frequency scaling it achieves this objective by selecting a configuration that yields the least

power usage (Section 4.2).

• A scheduler that assign application to the FPGA. The scheduler makes efficient use of FPGA

to increase performance and reduce power consumption (Section 4.1).

• An evaluation of the potential of the proposed approach using multiple cloud applications. The

results demonstrate that our approaches achieves the lowest power consumption while meeting

the performance targets (Section 5).

2. Architecture

Figure 1 shows an overview of the architecture of the heterogeneous cloud system for a server

with an FPGA. The virtualized server hosts multiple applications and has an FPGA attached to it.

Each application is deployed in a VM. The proposed system performs three main tasks; monitoring,

modeling and decision making. For monitoring, the system extracts information from the server,

and the VMs/applications using the sensor. The system model captures applications’ performance

and power consumption behavior using performance and power models respectively. Based on these

models, the controller makes an optimal decision to minimize power consumption using two subcom-

ponents: i) the FPGA scheduler that ensures efficient use of the FPGA and ii) the optimizer that

combines CPU allocation and frequency scaling for the VMs running collocated applications. Finally,

the actuator applies the new configuration. A high level function of each component of the system

architecture is described as follows:

• The sensor periodically polls the performance of each application. We currently measure perfor-

mance in terms of throughput for each application but the sensor can be extended to also handle



other performance metrics. The sensor also gathers the server power consumption. The perfor-

mance and power usage are then sent to the the performance and power models respectively, for

model re-computation.

• The performance model describes the relationship between an application’s resource allocation

and its performance. It automatically learns a model for this relationship. The details of this

model is described in subsection 3.2.

• The power model describes a relationship between the server’s resource allocation and its power

usage (refer section 3.1). This model is also updated online. The updated parameters from the

performance and power models are sent to the optimizer to determine the optimal configuration.

• The controller maps applications’ requirement to different resources using the optimizer and the

scheduler. The optimizer makes allocation decisions based on applications’ performance targets

and model parameters received from the power and performance models. It determines the

configuration that minimizes power consumption and meets the performance requirements. The

new configuration may result in changes in CPU frequency and/or number of cores allocation.

The scheduler controls the assignment of FPGA to VMs that can make use of the accelerator.

The selection of a VM depends on the algorithm used. The details of the scheduling are described

in section 4.1.

• The actuator is used to i) attach the FPGA to the VM selected by the scheduler, and ii) actuate

the configuration chosen by the optimizer, that is to change the CPU frequency and number of

cores of the running VMs.

3. Models

In order to analyze the energy and performance efficiency of a particular configuration, it is

first important to understand the relationship between resource allocation and power consumption,

as well as between resource allocation and application’s performance.

3.1. Power Model

The processor is one of the largest power consumers in today’s servers, and the choice of CPU

has a significant impact on the servers power consumption [11]. The power consumption of processors
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Figure 1: General Architecture of the proposed system

partly depends on the CPU frequency they are running. Servers also have non-neglectable idle energy

consumption. The relationship between server resource and its actual power consumption is normally

nonlinear due to the complexity of computer systems. Since nonlinear control can lead to unacceptable

runtime overhead, one feasible approach to capturing the system behavior is to linearize the system

model [11], [12]. Thus, we use the following linear model to approximate the quantitative relationship

between power usage and resource (CPU and CPU frequency) of the server running K VMs:

W = α
K∑
i=1

cifi +W static, (1)

where ci is the CPU assigned for VMi, and fi is the frequency of VMi’s CPU. W static represents static

system power. We have not (explicitly) included the FPGA power usage in the power model because

it has a low and fixed power usage. For the experiment we conducted, the measured power difference

when fully utilization the FPGA is less than 3% compared to when not using it. The parameter α is

recomputed online using the Recursive Least Squares (RLS) method [13] periodically The recursive

nature of the ELS algorithm makes the time needed for this computation negligible, as the model is

updated recursively instead of being computed from scratch every interval.



3.2. Performance model

The performance model is based on our previous work [14]. The throughput of application i

depends on the number of cores assigned as well as the frequency of the VM. More precisely, we model

the performance of application i as

Pi(ci, fi) = αicifi (2)

where ci and fi are CPU allocation and CPU frequency of VM i. The coefficient αi captures the

relationship between the current performance and CPU allocation of VM i. Here again, the parameter

αi is updated periodically using the RLS method.

4. Controller design

As described in Section 2 the controller selects an optimal configuration through the use of the

scheduler and the optimizer. First, the scheduler maximizes the use of the FPGA and iteratively attach

it to the VMs that needs it the most according to some criteria. Then the optimizer performs the

scaling of server CPU frequency and number of cores to all other VMs that are running on the server,

keeping their needed performance while consuming as less energy as possible. Detailed description of

each component given below.

4.1. Scheduler

The scheduler is in charge of making an efficient use of the available heterogeneous resources,

i.e., the cores and the FPGA. This means the scheduler objective is to meet applications SLOs while

at the same time consuming as less energy as possible. Due to the higher performance and higher

energy efficiency of the FPGA, the scheduler must maximize FPGA utilization. While doing so, it

also must consider which VM should use the FPGA at each point in time so that they can meet their

performance requirements. Note that due to the PCIe express limitations over virtual environments,

the FPGA cannot be shared for more that one virtual machine at the same time. Therefore, we use

a strategy in which the FPGAs are shared by slots of time among virtual machines. In other words,

the scheduler selects the best candidate VM and attach the FPGA to it.

The VM selection process is parameterizable and can be based on different criteria, such as

throughput, application deadlines, round-robin, etc. In this paper we propose an energy-aware metric



Algorithm 1 FPGA Scheduling

Require: VMfirst, ListV Ms, metric : throuhgput, deadline, V Mi, i=1,2,...K

1: while True do

2: if FPGA status == Free then

3: for each VMi, i=0,1,2,..N do

4: calculate metric

5: create ListV M

6: cort ListV M , higher metric first

7: end for

8: pick VMfirst from ListV M

9: attach FPGA to VMfirst

10: end if

11: end while

that considers both the applications performance and their deadlines to make an estimation of how

much computational capacity they would require to fulfill their requirements. Then, the application

with higher computational requirements, therefore the one that would need more energy to complete

on time, is selected and the FPGA is attached to it.

Algorithm 1 summarizes the FPGA scheduling process. First, the selected metric is calculated

for each VM, in our case the computational capacity requirements. Next, the scheduler sorts all VMs

based on that metric and assigns the FPGA to the first VM in the list. This process is repeated

every time the FPGA becomes available. Note the scheduler must be aware of when the FPGA can

be released and re-assigned to a different VM. A wrong synchronization could cause a misbehaving of

the system. To achieve this goal the status of the FPGA is monitored periodically and it is released

only when is ”free” (not processing) otherwise the scheduler cannot assign it to another VM.

4.2. Optimizer

Once the scheduler has performed the mapping between VMs, cores and FPGA, the optimizer is

in charge of the VMs’ vertical scaling and CPU frequency adaptation to reduce the energy consumption

while maintaining the required performance.

The optimization algorithm considers uniform CPU frequency for the full physical machine for

every optimization decision, i.e. all VMs run at the same CPU frequency. To run the VMs just fast

enough to meet their desired QoS, we use a resource allocation method that assigns cores even at

the fractional level. The problem is to determine the most power-efficient configuration, i.e. number



Algorithm 2 Optimizer

Parameters: α, mincost, minci,optcorei for VMi, i=1,2,...K

1: for each fj ∈ Listfreq do

2: ci = P
target
i /(αifj), i=1,2,...,K

3: if
∑K

i=1 ci ≤ CORES then

4: objcost =
∑K

i=1 αfjci +W static

5: if objcost ≤ mincost then

6: mincorei = ci

7: frequency = j

8: mincost = objcost

9: end if

10: end if

11: end for

12: if mincorei > 0 then

13: optfreq = frequency

14: optcorei = mincorei

15: end if

of (fractional) cores for VMs and server CPU frequency, while meeting performance targets. This

process is detailed at Algorithm 2.

The server comprises N cores and in total K VMs. To formulate the optimization problem,

we let Af be the set of clock frequencies available on the server. Let P
target
i (t) be the minimum

performance target of VM i at time t , for i = 1, 2...,K. We let ci denotes the number cores allocated

to VM i and define c = (c1, c2, ..., cK)T .

Next we define the following sets of admissible configurations. Let C = {c ∈ RK |
∑K

i ci ≤

N, ci ≥ 0∀i} be the set of all possible core allocations for the K virtual machines. Let U = {(c, f)|c ∈

C, and , f ∈ Af}.

The task of minimizing the power consumption, at each time t while attaining at least the

pre-specified performance target can now be formulated as the constrained optimization problem:

min
(c,f)∈U

W (c, f)

subject to

Pi(ci, f) ≥ P target
i (t) i = 1, 2, . . . ,K.

(3)



5. Evaluation

In this section, we present experimental setup and results from a number of experiments that

we conducted to evaluate our framework.

5.1. Hardware and Server Setup

The experiments were performed on an Intel Core I5 server with 4 cores and 14GB of Ram

Memory. The server runs Ubuntu 14.04.1 with Linux kernel 3.13.0-44-generic. It is attached to a

ML605 Evaluation Kit through Xilinx which contains a Virtex 6 (XC6VLX-240T-1FFG1156) FPGA

[15]. A WattsUp PRO power meter is used for measuring power usages of server [16]. This device is a

digital electronic system that utilizes a high-frequency sampling to measure voltage, current and true

power (in Watts). The VMs are managed by qemu-KVM version 2.0.0 [17] hypervisor. The FPGA

communicates with the VMs through PCIe bus and passthrough with VT-d Intel technology[18]. This

technology allows a direct communication (VMs/FPGA) with less overhead and latency. Additionally,

the RIFFA[19] framework is used for development the software in both CPU and FPGA.

5.2. Applications and Workload

In order to evaluate the proposed approach, we use two groups of applications: cloud applica-

tions that run on commodity hardware—in this case the RUBiS benchmark [20] and applications that

can use FPGA—here represented by video Sobel convolution[21]. RUBiS is an eBay-like e-commerce

application. RUBiS application is deployed with all of its components such as web servers and database

servers inside one VM as is commonly done in practice [22]. The VM is based on Debian 6.0.6, ini-

tially configured with 4 cores. To emulate the users accessing the RUBiS, we use an open source tool,

httpmon3. Dynamic variation in incoming load is emulated by changing the number of concurrent

users at runtime. The RUBiS client runs on a machine with the same experimental hardware setup

described in Section 5.1. For this application we use WIKI workload traces. A control interval of 15

seconds is used for the optimizer as this is short enough to adapt the underlying infrastructure more

quickly to workload changes and long enough to observe the effects of the re-configuration [7].

The video application uses a Sobel operator to compute an approximation of the gradient of

the image intensity function. The Sobel convolution is based on convolving an image with a small,

3https://github.com/cloud-control/httpmon



and integer-valued filter in the horizontal and vertical directions. The video we have used is a (.avi)

file with a resolution of 720x384. The FPGA, is dynamically reconfigured with the application-specific

instructions, in this case the Sobel convolution filter bitstream for processing a sequence of videos. We

vary the size of videos of each each VM by assigning a random number chunks, each chunk containing

13639 frames. To allow sharing of the FPGA by slots of time among virtual machines, a scheduling

decision is made whenever the FPGA completes processing a chunk of video.

The optimization algorithm written in C is implemented in-house and need less than 20 ms to

execute with the current setup. The scheduler is written in Python version 2.7 and takes less than 40

ms to execute. They run on a machine that is in the same local network with the node that does the

actuation.

5.3. Sensor and Actuator

We instrument RUBiS and video applications to gather and send throughput statistic via UDP

sockets to the optimizer. The incoming requests are also monitored to calculate the target throughput.

The number of frames that need to be processed per second to meet the deadline is taken as a target

throughput value for video VMs. The target values are sent to the optimizer via a TCP socket for

making decision. And the power consumption is read from WattsUp meter.

The actuator uses three mechanisms to make the changes; i) the cpufrequtils package [23] to

scale the CPU frequency of the cores. The cores can be scaled from 1.6 GHz to 2.4 GHz frequency.

We changed the default ondemand CPU frequency scaling policy to a usersspace policy that gives us

full control to change CPU frequency. ii) the taskset tool [24] to change the core allocation of VMs.

The tool takes advantage of the Linux scheduler property that ”bonds” a process to a given set of

CPUs, ensuring that the process will not run on any other CPUs. iii)In order to attach/detach the

FPGA, we use the KVM hotplug [25] pci with VT-d support. When the FPGA is free we establish a

communication with the qemu monitor [26] to attach or detach the FPGA depending on the scheduler

decision. Immediately, when a VM detects that it has an FPGA attached, it automatically starts

using it. In addition, when the FPGA finish processing, it is released. All in all these techniques make

overhead of actuation negligible.



5.4. Results

5.4.1. Models accuracy

To assess the prediction accuracy of performance and power models, we use two validation

measures—coefficient of determination (R2) and mean absolute percentage error (MAPE). These

are calculated as R2 = 1−
∑n

i=1(yi − fi)2∑n
i=1(yi − ȳ)2

and MAPE =
1

n

∑n
i=1|

(yi − fi)
yi

|, where n represents the

total number of samples, yi, fi and ȳ represent the measured value, predicted value and the sample

mean of y respectively. Table 1 shows the values of these two measures for the power model and the

three applications’ performance models. The models predict system behavior with MAPE below 10%

and R2 above 80%, which is considered sufficiently accurate [12].

Table 1: Prediction Accuracy of performance and power models.

MAPE R2

Power 1.6%% 79.5%

Videos 8.5% 83%

RUBiS 5.4% 91%

5.4.2. Heterogeneity

We compared the impact of using heterogeneous resources (cores and FPGA) in terms of pro-

cessing and energy efficiency against using only homogeneous server resources (cores). As shown in

Table 2 the system is able to process more frames for video applications in the given time period and

consumes less energy when using both regular cores and the FPGA. In fact, with a 7% increase in

energy, 35% more number frames are processed and this results in an overall energy efficiency im-

provement of 27%. Here we have used power normalized throughput (frames/sec per watt) metric as

a measure of energy efficiency. Figure 2 shows the details of this result such as the number of created

VMs and the energy (power*time) used by each VM to complete its task. As shown in the figure less

energy is needed to process each video in the heterogeneous setting. In addition, 28% more number

of video VMs are processed during the same time span. These findings reflect the benefit of using

FPGA in the cloud for improved performance and energy savings. For the experiments that follow,

the use of cores and FPGA is assumed.



Table 2: Processing-and energy-efficiency comparison between with- and without-FPGA configurations.

Frames Processed Average Power (Watt) Time (Sec) Energy (Watts*Sec)
Frames-per-

second-per-watt

withFPGA 1418456 108 6312 681696 2,08

withoutFPGA 995647 100 6312 631200 1.5

Figure 2: Number of video VMs processed and Energy per VM for FPGA and non-FPGA configurations

5.4.3. The optimizer and the scheduler

Both the optimzer and the scheduler work together to improve processing and energy efficiency

of the system. The scheduler make efficient assignment of the FPGA to VMs that can make use of

it. The optimizer complements the scheduler by assigning the right amount of resources to VMs that

are not picked by the scheduler as well as VMs that can run only on server CPU.

To show how one supports the other, we perform an experiment by running three applications:

RUBiS and one video application running on server CPU and a third video application using the

FPGA. Figure 3 show the FPGA assignment and server resource allocation by the scheduler and the

optimizer respectively. The scheduler selects a VM with high throughput(fps) and attaches it to the

FPGA. As shown the Figure 3b the scheduler first selects video1 VM to use the FPGA while the

optimzer determine the number of cores and CPU frequency for RUBiS and video0 VMs. Figure 3b

shows the allocation for the video VM. Then a scheduling decision is made that attach the FPGA

to a VM with higher target throughput(video1). Since video0 is accelerated well by the FPGA, the

optimizer assign fewer number of cores to meet its performance target. For cases where a video

throughput target is higher (the VM just started), shown in the right most side of the figure, the

optimizer increases resource allocation to meet the VM’s performance requirement. In this way, a



(a) Core and CPU frequency allocations by the optimizer for a video running on

server CPUs.

(b) Assignement of video VMs by the scheduler.

Figure 3: Resource allocation for video applications by the scheduler and optimizer.

more power-efficient system is achieved through a more efficient assignment of the FPGA and the

tuning of cores/frequency.

Furthermore, three assignation criteria for the FPGA have been tested:

• Random (RND) - The FPGA is assigned randomly to a VM.

• Earliest Deadline First (EDF) - The FPGA is assigned to the VM which runs the application

with closest deadline.

• Highest Job First (HJF) - The FPGA is assigned to the VM with has more pending work to do,

in relation with the deadline (i.e., it combines both the amount of work to do and the time to

do it).

Table 3 shows that for all the FPGA assignation criteria, the HJF policy obtains the best

time-to-complete the group of tasks and also the best performance in comparison with the amount

of energy consumption. It is because the system is aware which VM should receive the FPGA to



Table 3: FPGA assignation criteria comparison

FPGA Assignation Criteria Average Power (Watt) Time (Sec) Energy (Watts*Sec)
Frames-per-

second-per-watt

RND 112,91 6079 686323 2.5

EDF 112,5 5913 665452 2.58

HJF 113 5543 626913 2.74

speed up the application depending on the load. And, due to the features of the FPGA, the impact

of adding it is minimal.

5.4.4. Comparison of the optimizer with linux governors

We compared the effectiveness of the optimizer, in terms of reduced power usage against the

Linux ondemand and powersave CPU governors [27]. The ondemand governor manages the CPU

frequency depending on system utilization: If current utilization is higher than an upper threshold

(95%), the policy increases the frequency to the maximum. The powersave governor keeps the CPU

at the lowest frequency irregardless of any changes in workload. A work-conserving resource alloca-

tion method [12] is used for both ondemand and powersave governors. In this allocation mode, the

applications share all CPUs, i.e., they use any amount of CPU resource. For this experiment, the

total number of cores assigned is less than the total available in the server to exclude the impact of

resource contention among multiple running VMs.

Figure 4 shows the results of these techniques in terms of applications’ performance and energy

usage of the server. As shown in Figure 4a all techniques meet the performance targets for RUBiS.

Since the incoming load for RUBiS application is used as target, the measured throughput can never be

higher than the target. The video applications (shown here for video1) intensively use any available

CPU resource. As a result, the ondemand governor changes CPU frequency to the maximum due

to high cpu usage. As shown for video1 in Figure 4b, this enables the application to achieve a

throughput much higher than its performance targets. This also results in a higher server power

consumption, shown in Figure 4c. The powersave governor consumes power the least since it sets the

CPU statically to the minimum frequency. Given this fixed setup, the video application is unable

to reach its performance targets at some times or exceed its targets other times. In addition, the

governors are utilization-based, and are thus oblivious to the observed performance. The optimizer,

on the other hand, uses performance and power models to select the right number of cores and CPU

frequency, and minimizes power consumption while meeting performance targets. It achieves a 16%

decrease in power consumption compared to the ondemand governor.
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Figure 4: Comparison of optimizer, powersave, and ondemand governor in terms of performance and power consumption

under the two applications with different workloads.



5.4.5. Resource allocation by the optimizer

To help understand how the performance targets and server power consumption are achieved

using the Optimizer, Figure 5 show the CPU and server frequency allocations to RUBiS and video1

applications. We use the same workloads and performance targets for the experiments shown in Figure

4. For a given CPU frequency, shown in 5c, the optimizer assigns the right number cores for RUBiS

and video1 (shown in Figures 5a and 5b respectively) such that all of their targets is met and server

power is minimized. It achieves this objective by using an algorithm, outlined in Algorithm 2, and is

described as follows; if more cores are available than what is required for the lowest CPU frequency,

the optimizer runs the server at that frequency to reduce power the most. By doing this, it improves

energy efficiency at lower server utilization. However, due to factors like increased load, the number

of cores required for a given frequency might exceed the cores available in the server. In that case the

optimizer runs the server at a higher frequency in order to meet the performance targets. In summary,

cloud providers can run a more energy efficient servers by using technique that dynamically adjust

server CPU frequencies with methods that provide fine-grained resource allocations.

6. Related Work

A brief overview of the work in fields related to this paper is given next.

6.1. FPGAs in Cloud as a code accelerators

Catapult project [28] focus on designing a re-configurable fabric to accelerate portions of large-

scale software services. Their results show great improvements in both the latency and the throughput

of the service. Tsoi et al.[29] consider a heterogeneous computer cluster called Axel using devices such

as FPGAs and GPUs. Axel is presented as a collaborative systems to improve the performance and the

scalability of computer clusters. Byma et al. [30] present a hardware and software framework to enable

the use of multiple virtual FPGAs as generic cloud resources on OpenStack. Chen et al. [5] propose a

general framework for integrating FPGAs into the cloud based on a priority-based workload scheduling.

Guohao et al. [31] design an online benefit-based scheduling algorithm for the use of FPGAs in cloud

environment. Beach et al.[32] propose the use of a broker-based matchmaking system to select the

most suitable accelerator device for a particular application kernel. The Application accelerators

include GPUs, cell processors, and FPGAs among others. Chao et al.[33] propose a heterogeneous

cloud framework using FPGA for big data genome sequencing for MapReduce[34]. All of these works
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focus on the improvement of performance. However, none of the aforementioned works address the

integration of FPGA with regarding to energy savings.

Ouyang et al. [35] show an accelerated neural networks using FPGAs in the datacenter and

observe better performance and reduced power consumption. Coutinho et al. [36] present an hetero-

geneous architecture that integrates deferent types of devices such as FPGAs, programmable routers,

and SSDs to reduce the power consumption in a cloud platform. In addition heterogeneous program-

ming platforms are proposed. But the authors do not consider any strategy beyond of the use of more

suitable elements for each application in order to save energy.

6.2. Dynamic Frequency

There are many works on power management mechanism that use DVFS technique [37, 38, 39,

40, 41]. Q. Wu et al. [37] propose a dynamic-compiler-driven runtime voltage and frequency optimizer

to improve energy efficiency. Varma et al. [38] investigate the use of feedback loops for DVFS and

consider system utilization for decision making. M. Kondo [39] propose algorithm for improving total

instruction throughput, fairness, and energy efficiency of single chip multiprocessors These works do

not consider the observed performance to inform the DVFS decision. In addition, the above methods

cannot be directly applied in cloud environment.

6.3. Elasticity

Dawoud et al. [42] compare vertical elasticity with respect to horizontal elasticity and focus on

vertical elasticity. They experimentally demonstrated that a fine-grained vertical elastic VM archi-

tecture consumes less resources and avoids scaling up overhead while guaranteeing SLAs. Concerning

CPU elasticity, Kalyvianaki et al. [43] design a controller using Kalman filters to control allocation

based on CPU utilization. The CPU utilization is tracked and the allocations are updated accordingly.

Padala et al. [12] applied a proportional controller to dynamically adjust CPU shares to VM-based

multi-tier web applications. These works do not consider power usage in decision making.

In contrast to the discussed existing works, we combine FPGA scheduling, vertical scaling of

CPU and Frequency scaling for optimized power and performance in cloud environment.



7. Conclusions and Future Work

In this paper, we present an approach for power optimization that combines an optimizer for

an optimal configuration of cores and CPU frequency and scheduling algorithm for the management

of FPGA in heterogeneous cloud data centers. We develop power and performance models based

on the number of CPUs, and CPU frequency. The models are used by the optimizer to select the

best configuration. The scheduler selects the application the FPGA should run based on application

deadline and power-efficiency. Our experimental evaluation using multiple applications shows the

effectiveness of the proposed solution in power savings when both the optimizer and the scheduler are

used.

For future work, we plan to share the FPGA among multiple VMs, by using techniques that

virtualize the FPGA. Another direction is to allow memory elasticity in the system in order to achieve

even more power efficient results.
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